Reflection and transmission coefficients of plane waves with oblique incidence to a multilayered system of piezomagnetic and/or piezoelectric materials are investigated in this paper. The general Christoffel equation is derived from the coupled constitutive and balance equations, which is further employed to solve the elastic displacements and electric and magnetic potentials. Based on these solutions, the reflection and transmission coefficients in the corresponding layered structures are subsequently obtained by virtue of the propagator matrix method. Two layered examples are selected to verify and illustrate our solutions. One is the purely elastic layered system composed of aluminum and organic glass materials. The other layered system is composed of the novel magnetoelectroelastic material and the organic glass. Numerical results are presented to demonstrate the variation of the reflection and transmission coefficients with different incident angles, frequencies, and boundary conditions, which could be useful to nondestructive evaluation of this novel material structure based on wave propagations.

1.
Suchtelen
,
V.
, 1972, “
Product Properties: A New Application of Composite Material
,”
Philips Res. Rep.
0031-7918,
27
, pp.
28
37
.
2.
Pan
,
E.
, 2001, “
Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
608
618
.
3.
Pan
,
E.
, and
Heyliger
,
P. R.
, 2002, “
Free Vibration of Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
J. Sound Vib.
0022-460X,
252
, pp.
429
442
.
4.
Zhou
,
Z. G.
, and
Wang
,
B.
, 2002, “
Scattering of Harmonic Anti-Plane Shear Waves by an Interface Crack in Magneto-Electro-Elastic Composites
,”
Appl. Math. Mech.
0253-4827,
26
, pp.
17
26
.
5.
Wang
,
L.
, and
Rokhlin
,
S. I.
, 2002, “
Recursive Asymptotic Stiffness Matrix Method for Analysis of Surface Acoustic Wave Devices on Layered Piezoelectric Media
,”
Appl. Phys. Lett.
0003-6951,
81
, pp.
4049
4051
.
6.
Jin
,
J.
,
Wang
,
Q.
, and
Quek
,
S. T.
, 2002, “
Lamb Wave Propagation in a Metallic Semi-Infinite Medium Covered With Piezoelectric Layer
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2547
2556
.
7.
Chen
,
J. Y.
,
Pan
,
E.
, and
Chen
,
H. L.
, 2007, “
Wave Propagation in Magneto-Electro-Elastic Multilayered Plates
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
1073
1085
.
8.
Thomson
,
W.
, 1950, “
Transmission of Elastic Waves Through a Stratified Medium
,”
J. Appl. Phys.
0021-8979,
21
, pp.
89
93
.
9.
Haskell
,
N.
, 1955, “
The Dispersion of Surface Waves in Multilayered Media
,”
Bull. Seismol. Soc. Am.
0037-1106,
34
, pp.
17
34
.
10.
Brekhovskikh
,
L. M.
, 1980,
Waves in Layered Media
,
Academic
,
New York
.
11.
Folds
,
D. L.
, and
Loggins
,
C. D.
, 1977, “
Transmission and Reflection of Ultrasonic Waves in Layered Media
,”
J. Acoust. Soc. Am.
0001-4966,
62
, pp.
1102
1109
.
12.
Noorbehesht
,
B.
, and
Wade
,
G.
, 1980, “
Reflection and Transmission of Plane Elastic Waves at the Boundary Between Piezoelectric Materials and Water
,”
J. Acoust. Soc. Am.
0001-4966,
67
, pp.
1947
1953
.
13.
Alshits
,
V. I.
, and
Shuvalov
,
A. L.
, 1995, “
Resonance Reflection and Transmission of Shear Elastic Waves in Multilayered Piezoelectric Structures
,”
J. Appl. Phys.
0021-8979,
77
, pp.
2659
2665
.
14.
Rose
,
J. L.
, 1999,
Ultrasonic Waves in Solid Media
,
Cambridge University Press
,
Cambridge
.
15.
Lowe
,
M. J. S.
, 1995, “
Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
42
, pp.
525
542
.
16.
Nayfeh
,
A. H.
, 1995,
Wave Propagation in Layered Anisotropic Media With Applications to Composites
,
Elsevier Science
,
Amsterdam
.
17.
Shuvalov
,
A. L.
, and
Gorkunova
,
A. S.
, 1999, “
Cutting-Off Effect at Reflection-Transmission of Acoustic Waves in Anisotropic Media With Sliding Contact Interfaces
,”
Wave Motion
0165-2125,
30
, pp.
345
365
.
18.
Rokhlin
,
S. I.
, and
Wang
,
L.
, 2002, “
Stable Recursive Algorithm for Elastic Wave Propagation in Layered Anisotropic Media: Stiffness Matrix Method
,”
J. Acoust. Soc. Am.
0001-4966,
112
, pp.
822
834
.
19.
Oldano
,
C.
, 1989, “
Electro-Magnetic-Wave Propagation in Anisotropic Stratified Media
,”
Phys. Rev. A
1050-2947,
40
, pp.
6014
6020
.
20.
Schubert
,
M.
, 1996, “
Polarization-Dependent Optical Parameters of Arbitrarily Anisotropic Homogeneous Layered Systems
,”
Phys. Rev. B
0163-1829,
53
, pp.
4265
4274
.
21.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2006, “
A Spectral Finite Element Model for Wave Propagation Analysis in Laminated Composite Plate
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
477
488
.
22.
Lau
,
C. K.
, and
Tang
,
S. K.
, 2007, “
Mode Interactions and Sound Power Transmission Loss of Expansion Chambers
,”
ASME J. Vibr. Acoust.
0739-3717,
129
, pp.
141
147
.
23.
Kakoty
,
S. K.
, and
Roy
,
V. K.
, 2006, “
Bulk Reaction Modeling of Sound Propagation Through Circular Dissipative Ducts Backed by an Air Gap
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
699
704
.
24.
Pan
,
E.
, 2002, “
Three-Dimensional Green’s Functions in Anisotropic Magneto-Electro-Elastic Bimaterials
,”
ZAMP
0044-2275,
53
, pp.
815
838
.
25.
Zhao
,
M. H.
,
Yang
,
F.
, and
Liu
,
T.
, 2006, “
Analysis of a Penny-Shaped Crack in a Magneto-Electro-Elastic Medium
,”
Philos. Mag.
1478-6435,
86
, pp.
4397
4416
.
26.
Fabricant
,
V. I.
, 1989,
Application of Potential Theory in Mechanics
,
Kluwer Academic
,
Dordrecht
.
You do not currently have access to this content.