This paper deals with the design optimization problem of a structural-acoustic system in the presence of uncertainties. The uncertain vibroacoustic numerical model is constructed by using a recent nonparametric probabilistic model, which takes into account model uncertainties and data uncertainties. The formulation of the design optimization problem includes the effect of uncertainties and consists in minimizing a cost function with respect to an admissible set of design parameters. The numerical application consists in designing an uncertain master structure in order to minimize the acoustic pressure in a coupled internal cavity, which is assumed to be deterministic and excited by an acoustic source. The results of the design optimization problem, solved with and without the uncertain numerical model, show significant differences.

1.
Griffin
,
S.
,
Denoyer
,
K.
, and
Das
,
A.
, 1999, “
Passive Vibroacoustic Isolation for Payload Containers
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
10
(
1
), pp.
83
87
.
2.
Marburg
,
S.
, 2002, “
Developments in Structural-Acoustic Optimization for Passive Noise Control
,”
Arch. Comput. Methods Eng.
1134-3060,
9
(
4
), pp.
291
370
.
3.
Bullmore
,
A.
,
Nelson
,
P.
, and
Elliott
,
S.
, 1990, “
Theoretical Studies of the Active Control of Propeller-Induced Cabin Noise
,”
J. Sound Vib.
0022-460X,
140
(
2
), pp.
191
217
.
4.
Banks
,
H.
,
Demetriou
,
M.
, and
Smith
,
R.
, 1996, “
Robustness Studies for h-Infinity Feedback Control in a Structural-Acoustic Model With Periodic Excitation
,”
Int. J. Robust Nonlinear Control
1049-8923,
6
(
5
), pp.
453
478
.
5.
Dong
,
J.
,
Choi
,
K.
,
Kim
,
N.
, and
Powell
,
M.
, 2004, “
Design Optimization for Structural-Acoustic Problems Using FEA-BEA With Adjoint Variable Method
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
527
533
.
6.
Fritze
,
D.
,
Marburg
,
S.
, and
Hardtke
,
H.-J.
, 2005, “
FEM-BEM-Coupling and Structural-Acoustic Sensitivity Analysis for Shell Geometries
,”
Comput. Struct.
0045-7949,
83
(
2–3
), pp.
143
154
.
7.
Bös
,
J.
, 2006, “
Numerical Optimization of the Thickness Distribution of Three-Dimensional Structures With Respect to Their Structural Acoustic Properties
,”
Struct. Multidiscip. Optim.
1615-147X,
32
(
1
), pp.
12
30
.
8.
Franco
,
F.
,
Cunefare
,
K.
, and
Ruzzene
,
M.
, 2007, “
Structural-Acoustic Optimization of Sandwich Panels
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
3
), pp.
330
340
.
9.
Oakley
,
D.
,
Sues
,
R.
, and
Rhodes
,
G.
, 1998, “
Performance Optimization of Multidisciplinary Mechanical Systems Subjected to Uncertainties
,”
Probab. Eng. Mech.
0266-8920,
13
(
1
), pp.
15
26
.
10.
Jung
,
D.
, and
Lee
,
B.
, 2002, “
Development of a Simple and Efficient Method for Robust Design Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
9
), pp.
2201
2215
.
11.
Papadrakakis
,
M.
,
Lagaros
,
N.
, and
Plevris
,
V.
, 2005, “
Design Optimization of Steel Structures Considering Uncertainties
,”
Eng. Struct.
0141-0296,
27
(
9
), pp.
1408
1418
.
12.
Lee
,
K.-H.
, and
Park
,
G.-J.
, 2001, “
Robust Optimization Considering Tolerances of Design Variables
,”
Comput. Struct.
0045-7949,
79
(
1
), pp.
77
86
.
13.
Doltsinis
,
I.
,
Kang
,
Z.
, and
Cheng
,
G.
, 2005, “
Robust Design of Non-Linear Structures Using Optimization Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
12–16
), pp.
1779
1795
.
14.
Doltsinis
,
I.
, and
Kang
,
Z.
, 2006, “
Perturbation-Based Stochastic FE Analysis and Robust Design of Inelastic Deformation Processes
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
19–22
), pp.
2221
2251
.
15.
Langley
,
R.
, 2007, “
On the Diffuse Field Reciprocity Relationship and Vibrational Energy Variance in a Random Subsystem at High Frequencies
,”
J. Acoust. Soc. Am.
0001-4966,
121
(
2
), pp.
913
921
.
16.
Ghanem
,
R.
, and
Spanos
,
P.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
17.
Kleiber
,
M.
,
Tran
,
D.
, and
Hien
,
T.
, 1992,
The Stochastic Finite Element Method
,
Wiley
,
New York
.
18.
Ibrahim
,
R.
, 1985,
Parametric Random Vibration
,
Wiley
,
New York
.
19.
Lin
,
Y.
, and
Cai
,
G.
, 1995,
Probabilistic Structural Dynamics
,
McGraw-Hill
,
New York
.
20.
Schuëller
,
G. I.
, 1997, “
A State-of-the-Art Report on Computational Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
12
(
4
), pp.
197
321
.
21.
Doltsinis
,
I.
, and
Kang
,
Z.
, 2004, “
Robust Design of Structures Using Optimization Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
23–26
), pp.
2221
2237
.
22.
Zang
,
C.
,
Friswell
,
M.
, and
Mottershead
,
J.
, 2005, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
0045-7949,
83
(
4–5
), pp.
315
326
.
23.
Capiez-Lernout
,
E.
, and
Soize
,
C.
, “
Robust Design Optimization in Computational Mechanics
,”
ASME J. Appl. Mech.
0021-8936, to be published.
24.
Soize
,
C.
, 2000, “
A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
0266-8920,
15
(
3
), pp.
277
294
.
25.
Soize
,
C.
, 2001, “
Maximum Entropy Approach for Modeling Random Uncertainties in Transient Elastodynamic
,”
J. Acoust. Soc. Am.
0001-4966,
109
(
5
), pp.
1979
1996
.
26.
Soize
,
C.
, 2005, “
A Comprehensive Overview of a Non-Parametric Probabilistic Approach of Model Uncertainties for Predictive Models in Structural Dynamics
,”
J. Sound Vib.
0022-460X,
288
(
3
), pp.
623
652
.
27.
Soize
,
C.
, 2005, “
Random Matrix Theory for Modeling Random Uncertainties in Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
12–16
), pp.
1333
1366
.
28.
Chebli
,
H.
, and
Soize
,
C.
, 2004, “
Experimental Validation of a Nonparametric Probabilistic Model of Nonhomogeneous Uncertainties for Dynamical Systems
,”
J. Acoust. Soc. Am.
0001-4966,
115
(
2
), pp.
697
705
.
29.
Duchereau
,
J.
, and
Soize
,
C.
, 2005, “
Transient Dynamics in Structures With Nonhomogeneous Uncertainties Induced by Complex Joints
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
4
), pp.
854
867
.
30.
Chen
,
C.
,
Duhamel
,
D.
, and
Soize
,
C.
, 2006, “
Probabilistic Approach for Model and Data Uncertainties and Its Experimental Identification in Structural Dynamics: Case of Composite Sandwich Panels
,”
J. Sound Vib.
0022-460X,
294
(
1–2
), pp.
64
81
.
31.
Durand
,
J.-F.
, 2007, “
Modelisation of Cars in Computational Structural-Acoustics With Uncertainties and Its Experimental Validation
,” Ph.D. thesis.
32.
Chen
,
C.
, 2007, “
Vibration and Vibroacoustics of Uncertain Composite Sandwich Panels: Experiments and Model Validation
,” Ph.D. thesis.
33.
Ohayon
,
R.
, and
Soize
,
C.
, 1998,
Structural Acoustics and Vibration
,
Academic
,
San Diego
.
34.
Serfling
,
R.
, 1980,
Approximation Theorems of Mathematical Statistics
,
Wiley
,
New York
.
You do not currently have access to this content.