Organization of product tests in the microelectronic and optical-electronic industries by the impact method is considered. Two mathematical models: a circular plate under dynamic loading with predetermined initial conditions, and contact interaction of a falling mass and a barrier, are examined. The deflection function, curvature, and acceleration are determined. As the series for these characteristics may prove divergent, the problem is to secure sufficiently reliable results. The method of impact mechanics permits determination of the duration and force of the impact, estimation of the total energy of each mode in the expansion of the deflection function and preclusion of divergent series when determining the plate acceleration and curvature during the vibration process. In parallel, viscoelasticity is simulated with the aid of a fractional-differentiation operator, certain features of which are discussed. Representation of this operator with time-dependent order by ones with constant orders is considered. Three alternative approaches for determination of the eigenfrequency and damping decrement of a vibration process are examined. In particular, a method for calculating these characteristics under conditions of time-dependence and servo control of the order function is proposed.

1.
Steinberg
,
D. S.
, 2000,
Vibration Analysis for Electronic Equipment
,
3rd ed.
,
Wiley
, NY.
2.
Suhir
,
E.
, 2002, “
Could Shock Tests Adequately Mimic Drop Test Conditions?
ASME J. Electron. Packag.
1043-7398,
124
, pp.
170
177
.
3.
Goldsmith
,
W.
, 2001,
Impact: The Theory and Physical Behavior of Colliding Solids
,
Dover
, NY.
4.
Zukas
,
J. A.
,
Nicholas
,
T.
,
Swift
,
H. F.
,
Greszczuk
,
L. B.
, and
Curran
,
D. R.
, 1982,
Impact Dynamics
,
Wiley-Interscience
, NY.
5.
Coimbra
,
C. F. M.
, 2003, “
Mechanics With Variable-Order Differential Operators
.”
Ann. Phys. (N.Y.)
0003-4916,
12
, pp.
692
703
.
6.
Ingman
,
D.
,
Suzdalnitsky
,
J.
, and
Zeifman
,
M.
, 2000, “
Constitutive Dynamic-Order Model for Nonlinear Contact Phenomena
.”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
383
390
.
7.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2001, “
Iteration Method for Equation of Viscoelastic Motion With Fractional Differential Operator of Damping
.”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
5027
5036
.
8.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2004, “
Control of Damping Oscillations by Fractional Differential Operator With Time-Dependent Order
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
52
), pp.
5585
5595
.
9.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2004, “
Analysis of the Viscoelastic Rod Dynamics via Models Involving Fractional Derivatives or Operators of Two Different Orders
,”
Shock Vib. Dig.
0583-1024,
36
(
1
), pp.
3
26
.
10.
Hernandez-Jimenez
,
A.
,
Hernandez-Santiago
,
J.
,
Macias-Garcia
,
A.
, and
Sanchez-Gonzalez
,
J.
, 2002, “
Relaxation Modulus in PMMA and PTFE Fitting by Fractional Maxwell Model
,”
Polym. Test.
0142-9418,
21
, pp.
325
331
.
11.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
, 2002, “
Variable Order and Distributed Order Fractional Operators
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
57
98
.
12.
Field
,
J. S.
, and
Swain
,
M. V.
, 1993, “
A Simple Predictive Model of Spherical Indentation
,”
J. Mater. Res.
0884-2914,
8
(
2
), pp.
297
305
.
13.
Bardenhagen
,
S. G.
,
Stout
,
M. G.
, and
Gray
,
G. T.
, 1997, “
Three-Dimensional, Finite Deformation, Viscoelastic Constitutive Models for Polymeric Materials
,”
Mech. Mater.
0167-6636,
25
, pp.
235
253
.
14.
Barlow
,
D. A.
, 1973, “
The Indentation and Scratch Hardness of Plastics
,”
ASME J. Eng. Mater. Technol.
0094-4289,
95
, pp.
343
351
.
15.
Sheivekhman
,
A.
, and
Suzdalnitsky
,
J.
, 1997, “
Determination of Elastoplastic Properties of Engineering Materials From Spherical Indentation
,”
J. Mech. Behav. Mater.
0334-8938,
8
(
4
), pp.
283
294
.
16.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2005, “
Application of Differential Operator With Servo Order Function in Model of the Viscoelastic Deformation Process
,”
J. Eng. Mech.
0733-9399,
131
(
7
), pp.
763
767
.
17.
Bagley
,
R. L.
, and
Torvik
,
P. J.
, 1983, “
Fractional Calculus – A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
0001-1452,
21
(
5
), pp.
741
748
.
18.
Bagley
,
R. L.
, and
Calico
,
R. A.
, 1991, “
Fractional Order Equations for the Control of Viscoelastically Damped Structures
,”
J. Guid. Control Dyn.
0731-5090,
14
(
2
), pp.
304
311
.
19.
Eldred
,
L. B.
,
Baker
,
W. P.
, and
Palazotto
,
A. N.
, 1995, “
Kelvin–Voigt vs. Fractional Derivate Model as Constitutive Relations for Viscoelastic Materials
,”
AIAA J.
0001-1452,
33
(
3
), pp.
547
550
.
20.
Pritz
,
T.
, 1996, “
Analysis of Four–Parameter Fractional Derivative Model of Real Solid Materials
,”
J. Sound Vib.
0022-460X,
195
(
1
), pp.
103
115
.
21.
Pritz
,
T.
, 2003, “
Five–Parameter Fractional Derivate Model for Polymeric Damping Materials
,”
J. Sound Vib.
0022-460X,
265
(
5
), pp.
935
952
.
22.
Brackbill
,
C. R.
,
Lesieutre
,
G. A.
,
Smith
,
E. C.
, and
Govindswamy
,
K.
, 1996, “
Thermomechanical Modelling of Elastomeric Materials
,”
Smart Mater. Struct.
0964-1726,
5
, pp.
529
539
.
23.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 1997, “
Application of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
Appl. Mech. Rev.
0003-6900,
50
(
1
), pp.
15
57
.
24.
Samko
,
S. G.
, 1995, “
Fractional Integration and Differentiation of Variable Order
,”
Anal. Math.
,
21
, pp.
213
236
.
25.
Abramovitz
,
M.
, and
Stegun
,
I. A.
, 1964,
Handbook of Mathematical Functions
,”
U.S. Government Printing Office
, Washington, D.C.
26.
Soon
,
C. M.
,
Coimbra
,
C. F. M.
, and
Kobayashi
,
M. H.
, 2005, “
The Variable Viscoelasticity Oscillator
,”
Ann. Phys.
0003-3804,
14
(
6
), pp.
378
389
.
27.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
, 2002, “
Application of Fractional Differentiation to the Study of Oscillating Viscoelastic Medium with Cylindrical Cavity
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
642
645
.
28.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
, NY.
29.
Sun
,
C. T.
, and
Chattopadhyay
,
S.
, 1975, “
Dynamic Response of Anisotropic Laminated Plates Under Initial Stress to Impact of a Mass
,”
J. Appl. Mech.
0021-8936,
42
, pp.
693
698
.
You do not currently have access to this content.