Active excitation is an emerging area of study within the field of structural health monitoring whereby prescribed inputs are used to excite the structure so that damage-sensitive features may be extracted from the structural response. This work demonstrates that the parameters of a system of ordinary differential equations may be adjusted via an evolutionary algorithm to produce excitations that improve the sensitivity and robustness to extraneous noise of state-space based damage detection features extracted from the structural response to such excitations. A simple computational model is used to show that significant gains in damage detection and quantification may be obtained from the response of a spring-mass system to improved excitations generated by three separate representative ordinary differential equation systems. Observed differences in performance between the excitations produced by the three systems cannot be explained solely by considering the frequency characteristics of the excitations. This work demonstrates that the particular dynamic evolution of the excitation applied to the structure can be as important as the frequency characteristics of said excitation if improved damage detection is desired. In addition, the implied existence of a globally optimum excitation (in the sense of improved damage assessment) for the model system is explored.

1.
Hunt
,
D. L.
,
Weiss
,
S. P.
,
West
,
W. M.
,
Dunlap
,
T. A.
, and
Freesmeyer
,
S. R.
, 1990, “
Development and Implementation of a Shuttle Modal Inspection System
,”
Sound Vib.
0038-1810,
24
(
9
), pp.
34
42
.
2.
Sohn
,
H.
, and
Farrar
,
C. R.
, 2001, “
Damage Diagnosis Using Time Series Analysis of Vibration Signals
,”
Smart Mater. Struct.
0964-1726,
10
(
3
), pp.
446
451
.
3.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hunter
,
N. F.
, and
Worden
,
K.
, 2001, “
Structural Health Monitoring Using Statistical Pattern Recognition
,”
J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
706
711
.
4.
Hou
,
Z.
,
Noori
,
M.
, and
Amand
,
R. S.
, 2000, “
Wavelet-Based Approach for Structural Damage Detection
,”
J. Eng. Mech.
0733-9399,
126
, pp.
677
683
.
5.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
, 1998, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
0583-1024,
205
, pp.
631
645
.
6.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hemez
,
F. M.
,
Czarnecki
,
J. J.
,
Shunk
,
D. D.
,
Stinemates
,
D. W.
, and
Nadler
,
B. R.
, 2004, “
A Review of Structural Health Monitoring Literature: 1996–2001
,” Technical Report No. LA-13976-MS,
Los Alamos National Laboratory
, Los Alamos, NM.
7.
Takens
,
F.
, 1981, “
Detecting Strange Attractors in Turbulence
,”
Dynamical Systems and Turbulence (Springer Lecture Notes in Mathematics)
D.
Rand
and
L. S.
Young
, eds.,
Springer
,
New York
, Vol.
898
, pp.
366
381
.
8.
Whitney
,
H.
, 1936, “
Differential Manifolds
,”
Ann. Math.
0003-486X,
37
, p.
645
.
9.
Sauer
,
T.
, and
Yorke
,
J. A.
, 1993, “
How Many Delay Coordinates Do You Need?
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
3
(
3
), pp.
737
744
.
10.
Grassberger
,
P.
, and
Procaccia
,
I.
, 1983, “
Characterization of Strange Attractors
,”
Phys. Rev. Lett.
0031-9007,
50
(
5
), pp.
346
349
.
11.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
, 1985, “
Determining Lyapunov Exponents from a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
12.
Wang
,
W. J.
,
Wu
,
Z. T.
, and
Chen
,
J.
, 2000, “
Fault Identification in Rotating Machinery Using the Correlation Dimension and Bispectra
,”
Nonlinear Dyn.
0924-090X,
25
, pp.
383
393
.
13.
Trendafilova
,
I.
, and
Van Brussel
,
H.
, 2001, “
Non-Linear Dynamics Tools for the Motion Analysis and Condition Monitoring of Robot Joints
,”
Mech. Syst. Signal Process.
0888-3270,
15
(
6
), pp.
1141
1164
.
14.
Chelidze
,
D.
, and
Cusumano
,
J. P.
, 2006, “
Phase Space Warping: Nonlinear Time-Series Analysis for Slowly Drifting Systems
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
364
, pp.
2495
2513
.
15.
Moniz
,
L.
,
Pecora
,
L.
,
Nichols
,
J.
,
Todd
,
M. D.
, and
Wait
,
J. R.
, 2004, “
Dynamical Assessment of Structural Damage Using the Continuity Statistic
,”
Struct. Health Monit.
1475-9217,
3
(
3
), pp.
199
212
.
16.
Nichols
,
J. M.
,
Nichols
,
C. J.
,
Todd
,
M. D.
,
Seaver
,
M.
,
Trickey
,
S. T.
, and
Virgin
,
L. N.
, 2004, “
Use of Data Driven Phase Space Models in Assessing the Strength of a Bolted Connection in a Composite Beam
,”
Smart Mater. Struct.
0964-1726,
13
(
2
), pp.
241
250
.
17.
Todd
,
M. D.
,
Nichols
,
J. M.
,
Pecora
,
L. M.
, and
Virgin
,
L. N.
, 2001, “
Vibration-Based Damage Assessment Utilizing State Space Geometry Changes: Local Attractor Variance Ratio
,”
Smart Mater. Struct.
0964-1726,
10
(
5
), pp.
1000
1008
.
18.
Nichols
,
J. M.
,
Todd
,
M. D.
, and
Wait
,
J. R.
, 2003, “
Using State Space Predictive Modeling with Chaotic Interrogation in Detecting Joint Preload Loss in a Frame Structure Experiment
,”
Smart Mater. Struct.
0964-1726,
12
(
4
), pp.
580
601
.
19.
Todd
,
M. D.
,
Erickson
,
K.
,
Chang
,
L.
,
Lee
,
K.
, and
Nichols
,
J. M.
, 2004, “
Using Chaotic Interrogation and Attractor Nonlinear Cross-Prediction Error to Detect Fastener Preload Loss in an Aluminum Frame
,”
Chaos
1054-1500,
14
(
2
), pp.
387
399
.
20.
Olson
,
C. C.
,
Overbey
,
L. A.
, and
Todd
,
M. D.
, 2005, “
A Comparison of State-Space Attractor Features in Structural Health Monitoring
,”
Proceedings of the 23rd International Modal Analysis Conference (IMAC XXIII)
,
Orlando, FL
, Jan. 31–Feb. 3.
21.
Solbeck
,
J. A.
, and
Ray
,
L. R.
, 2006, “
Damage Identification Using Sensitivity-Enhancing Control and Identified Models
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
2
), pp.
210
220
.
22.
Ray
,
L. R.
, and
Marini
,
S.
, 2000, “
Optimization of Control Laws for Damage Detection in Smart Structures
,”
Proceedings SPIE Smart Structures and Materials Conference
, March 6,
Newport Beach, CA
,
V. V.
Varadan
, ed.,
SPIE
,
Bellingham, WA
,
3984
, pp.
395
402
.
23.
Mitchell
,
M.
, 1996,
An Introduction to Genetic Algorithms
,
MIT Press
,
Cambridge, MA
, Chap. 5.
24.
Storn
,
R.
, and
Price
,
R.
, 1997, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
0925-5001,
11
(
4
), pp.
341
359
.
25.
Broomhead
,
D. S.
, and
King
,
G. P.
, 1986, “
Extracting Qualitative Dynamics from Experimental Data
,”
Physica D
0167-2789,
20
, pp.
217
236
.
26.
Mees
,
A. I.
,
Rapp
,
P. E.
, and
Jennings
,
L. S.
, 1987, “
Singular Value Decomposition and Embedding Dimension
,”
Phys. Rev. A
1050-2947,
36
(
1
), pp.
340
346
.
27.
Fraser
,
A. M.
, and
Swinney
,
H. L.
, 1986, “
Independent Coordinates for Strange Attractors from Mutual Information
,”
Phys. Rev. A
1050-2947,
33
(
2
), pp.
1134
1140
.
28.
Kennel
,
M. B.
, and
Abarbanel
,
H. D. I.
, 1992, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
1050-2947,
45
(
6
), pp.
3403
3411
.
29.
Schreiber
,
T.
, 1997, “
Detecting and Analyzing Nonstationarity in a Time Series Using Nonlinear Cross Predictions
,”
Phys. Rev. Lett.
0031-9007,
78
(
5
), pp.
843
846
.
30.
Theiler
,
J.
, 1986, “
Spurious Dimension from Correlation Algorithms Applied to Limited Time-Series Data
,”
Phys. Rev. A
1050-2947,
34
(
3
), pp.
2427
2432
.
31.
Pecora
,
L. M.
, and
Carroll
,
T. L.
, 1996, “
Discontinuous and Nondifferentiable Functions and Dimension Increase Reduced by Filtering Chaotic Data
,”
Chaos
1054-1500,
6
,
432
439
.
32.
Sprott
,
J. C.
, 1994, “
Some Simple Chaotic Flows
,”
Phys. Rev. E
1063-651X,
50
(
2
), pp.
R647
R650
.
33.
Rossler
,
O. E.
, 1976, “
An Equation for Continuous Chaos
,”
Phys. Lett.
0375-9601 A,
57
(
5
), pp.
397
398
.
34.
Lorenz
,
E. N.
, 1963, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
0022-4928,
20
, pp.
130
141
.
35.
Worden
,
K.
,
Manson
,
G.
,
Sohn
,
H.
, and
Farrar
,
C. R.
, 2005, “
Extreme Value Statistics from Differential Evolution for Damage Detection
,”
Proceedings of the 23rd International Modal Analysis Conference (IMAC XXIII)
,
Orlando, FL
, Jan. 31–Feb. 3.
36.
Theiler
,
J.
,
Eubank
,
S.
,
Longtin
,
A.
,
Galdrikian
,
B.
, and
Farmer
,
J. D.
, 1992, “
Testing for Nonlinearity in Time Series: The Method of Surrogate Data
,”
Physica D
0167-2789,
58
, pp.
77
94
.
You do not currently have access to this content.