This paper demonstrates two novel methods for identifying small parametric variations in an experimental system based on the analysis of sensitivity vector fields (SVFs) and probability density functions (PDFs). The experimental system includes a smart sensing beam excited by a nonlinear feedback excitation through two lead zirconate titanate patches symmetrically bonded on both sides at the root of the beam. The nonlinear feedback excitation requires the measurement of the dynamics (e.g., velocity of one point at the tip of the beam) and a nonlinear feedback loop, and is designed such that the beam vibrates in a chaotic regime. Changes in the state space attractor of the dynamics due to small parametric variations can be captured by SVFs, which, in turn, are collected by applying point cloud averaging to points distributed in the attractors for nominal and changed parameters. Also, the PDFs characterize statistically the distribution of points in the attractors. The differences between the PDFs of the attractors for different changed parameters and the base line attractor can provide different attractor morphing modes for identifying variations in distinct parameters. Experimental results based on the proposed approaches show that very small amounts of added mass at different locations along the beam can be accurately identified.2

1.
Zimmerman
,
D. C.
, and
Kaouk
,
M.
, 1994, “
Structural Damage Detection Using Minimum Rank Update Theory
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
2
), pp.
222
231
.
2.
Kaouk
,
M.
,
Zimmerman
,
D. C.
, and
Simmermacher
,
T. W.
, 2000, “
Assessment of Damage Affecting All Structural Properties Using Experimental Modal Parameters
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
4
), pp.
456
463
.
3.
Abdalla
,
M. O.
,
Grigoriadis
,
K. M.
, and
Zimmerman
,
D. C.
, 2000, “
STructural Damage Detection Using Linear Matrix Inequality Methods
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
4
), pp.
448
455
.
4.
D’Souza
,
K.
, and
Epureanu
,
B. I.
, 2005, “
Damage Detection in Nonlinear Systems Using System Augmentation and Generalized Minimum Rank Perturbation Theory
,”
Smart Mater. Struct.
0964-1726,
14
(
5
), pp.
989
1000
.
5.
D’Souza
,
K.
, and
Epureanu
,
B. I.
, 2005, “
System Augmentation and Matrix Updating for Damage Detection in Nonlinear Systems
,”
Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Vol.
AIAA-2005-1831
, pp.
1
9
.
6.
D’Souza
,
K.
, and
Epureanu
,
B. I.
, 2005, “
Minimum Rank Generalized Subspace Updating Approach for Nonlinear Systems
,”
Proceedings of the 2005 International Mechanical Engineering Congress and Exposition (IMECE)
, Vol.
IMECE-2005-80135
, pp.
1
10
.
7.
Feeny
,
B. F.
,
Yuan
,
C. M.
, and
Cusumano
,
J. P.
, 2001, “
Parametric Identification of an Experimental Magneto-Elastic Oscillator
,”
J. Sound Vib.
0022-460X,
247
(
5
), pp.
785
806
.
8.
Masri
,
S. F.
,
Miller
,
R. K.
,
Saud
,
A. F.
, and
Caughey
,
T. K.
, 1987, “
Identification of Nonlinear Vibrating Structures: Part I: Formulation
,”
ASME J. Appl. Mech.
0021-8936,
109
(
54
), pp.
918
922
.
9.
Smyth
,
A. W.
,
Masri
,
S. F.
,
Chassiakos
,
A. G.
, and
Caughey
,
T. K.
, 1999, “
On-Line Parametric Identification of MDOF Nonlinear Hysteretic Systems
,”
J. Eng. Mech.
0733-9399,
125
(
2
), pp.
133
142
.
10.
Zang
,
C.
, and
Imregun
,
M.
, 2001, “
Structural Damage Detection Using Artificial Neural Networks and Measured FRF Data Reduced via Principal Component Projection
,”
J. Sound Vib.
0022-460X,
242
(
5
), pp.
813
827
.
11.
Chancellor
,
R. S.
,
Alexander
,
R. M.
, and
Noah
,
S. T.
, 1996, “
Detecting Parameter Changes Using Experimental Nonlinear Dynamics and Chaos
,”
ASME J. Vibr. Acoust.
0739-3717,
118
(
3
), pp.
375
383
.
12.
Pecora
,
L. M.
, and
Caroll
,
T. L.
, 1996, “
Discontinuous and Nondifferentiable Functions and Dimension Increase Induced by Filtering Chaotic Data
,”
Chaos
1054-1500,
6
(
3
), pp.
432
439
.
13.
Wang
,
W. J.
,
Wu
,
Z. T.
, and
Chen
,
J.
, 2001, “
Fault Identification in Rotating Machinery Using the Correlation Dimension and Bispectra
,”
Nonlinear Dyn.
0924-090X,
25
(
4
), pp.
383
393
.
14.
Nichols
,
J. M.
,
Trickey
,
S. T.
,
Todd
,
M. D.
, and
Virgin
,
L. N.
, 2003, “
Structural Health Monitoring Through Chaotic Interrogation
,”
Meccanica
0025-6455,
38
(
2
), pp.
239
250
.
15.
Todd
,
M. D.
,
Nichols
,
J. M.
,
Pecora
,
L. M.
, and
Virgin
,
L. N.
, 2001, “
Vibration-Based Damage Assessment Utilizing State Space Geometry Changes: Local Attractor Variance Ratio
,”
Smart Mater. Struct.
0964-1726,
10
(
5
), pp.
1000
1008
.
16.
Chelidze
,
D.
,
Cusumano
,
J. P.
, and
Chatterjee
,
A.
, 2002, “
A Dynamical Systems Approach to Damage Evolution Tracking, Part 1: Description and Experimental Application
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
250
257
.
17.
Cusumano
,
J. P.
,
Chelidze
,
D.
, and
Chatterjee
,
A.
, 2002, “
A Dynamical Systems Approach to Damage Evolution Tracking, Part 2: Model-Based Validation and Physical Interpretation
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
258
264
.
18.
Chatterjee
,
A.
,
Cusumano
,
J. P.
, and
Chelidze
,
D.
, 2002, “
Optimal Tracking of Parameter Drift in a Chaotic System: Experiment and Theory
,”
J. Sound Vib.
0022-460X,
250
(
5
), pp.
877
901
.
19.
Epureanu
,
B. I.
, and
Yin
,
S. H.
, 2004, “
Identification of Damage in an Aeroelastic System Based on Attractor Deformations
,”
Comput. Struct.
0045-7949,
82
, (
31–32
) pp.
2743
2751
.
20.
Epureanu
,
B. I.
,
Yin
,
S. H.
, and
Derriso
,
M. D.
, 2005, “
High-Sensitivity Damage Detection Based on Enhanced Nonlinear Dynamics
,”
Smart Mater. Struct.
0964-1726,
14
(
2
), pp.
321
327
.
21.
Epureanu
,
B. I.
,
Yin
,
S. H.
, and
Dowell
,
E. H.
, 2004, “
Enhanced Nonlinear Dynamics for Accurate Identification of Stiffness Loss in a Thermo-Shielding Panel
,”
Nonlinear Dyn.
0924-090X,
39
(
1–2
), pp.
197
211
.
22.
Hashmi
,
A.
, and
Epureanu
,
B. I.
, 2006, “
Sensitivity Resonance and Attractor Morphing Quantified by Sensitivity Vector Fields for Parameter Reconstruction
,”
Nonlinear Dyn.
0924-090X,
45
(
3-4
), pp.
319
335
.
23.
Epureanu
,
B. I.
, and
Hashmi
,
A.
, 2006, “
Parameter Reconstruction Based on Sensitivity Vector Fields
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
6
), pp.
732
740
.
24.
Epureanu
,
B. I.
, and
Dowell
,
E. H.
, 2000, “
Optimal Multi-Dimensional OGY Controller for Stabilizing Fully Unstable Limit Cycles
,”
Physica D
0167-2789,
139
(
1–2
), pp.
87
96
.
25.
Epureanu
,
B. I.
, and
Dowell
,
E. H.
, 1998, “
On the Optimality of the OGY Control Scheme
,”
Physica D
0167-2789,
116
(
1–2
), pp.
1
7
.
26.
Epureanu
,
B. I.
,
Trickey
,
S. T.
, and
Dowell
,
E. H.
, 1998, “
Stabilization of Unstable Limit Cycles in Systems With Limited Controllability: Expanding the Basin of Convergence of OGY-Type Controllers
,”
Nonlinear Dyn.
0924-090X,
15
(
2
), pp.
191
205
.
27.
Yin
,
S. H.
, and
Epureanu
,
B. I.
, 2006, “
Structural Health Monitoring Based on Sensitivity Vector Fields and Attractor Morphing
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
364
(
1846
), pp.
2515
2538
.
28.
Azeez
,
M. F. A.
, and
Vakakis
,
A. F.
, 2000, “
Proper Orthogonal Decomposition of a Class of Vibroimpact Oscillations
,”
J. Sound Vib.
0022-460X,
240
(
5
), pp.
859
889
.
29.
Feeny
,
B. F.
, 2002, “
On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
1
), pp.
157
160
.
30.
Sprott
,
J. C.
, 2003,
Chaos and Time-Series Analysis
,
Oxford University Press
,
New York
.
31.
Hegger
,
R.
,
Kantz
,
H.
, and
Schreiber
,
T.
, 1999, “
Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package
,”
Chaos
1054-1500,
9
(
2
), pp.
413
435
.
You do not currently have access to this content.