Structural health monitoring techniques are being developed to reduce operations and support costs, increase availability, and maintain safety of current and future air vehicle systems. The use of Lamb waves, guided elastic waves in a plate, has shown promise in detecting localized damage, such as cracking or corrosion, due to the short wavelengths of the propagating waves. Lamb wave techniques have been utilized for structural health monitoring of simple plate and shell structures. However, most aerospace structures are significantly more complex and advanced techniques may be required. One advanced technique involves using an array of piezoelectric transducers to generate or sense elastic waves in the structure under inspection. By adjusting the spacing and/or phasing between the piezoelectric transducers, transmitted or received waves can be focused in a specific direction. This paper presents beam forming details based on analytical modeling, using the finite element method, and experimental testing, using an array of piezoelectric transducers on an aluminum panel. Results are shown to compare well to theoretical predictions.

1.
Sohn
,
H.
,
Farrar
,
C.
,
Hemez
,
F.
,
Shunk
,
D.
,
Stinemates
,
D.
, and
Nadler
,
B.
, 2003, “
A Review of Structural Health Monitoring Literature: 1996-2001
,” Los Alamos National Laboratory Report No. LA-13976-MS, available online at: http://www.lanl.gov/projects/damage_id/reports/LA-13976-MS-Final.pdfhttp://www.lanl.gov/projects/damage_id/reports/LA-13976-MS-Final.pdf.
2.
Worden
,
K.
,
Farrar
,
C.
,
Manson
,
G.
, and
Park
,
G.
, 2005, “
Fundamental Axioms of Structural Health Monitoring
,”
Structural Health Monitoring 2005: Advancements and Challenges for Implementation
,
F.
Chang
, ed.,
DEStech Publications
, Lancaster, PA, pp.
26
41
.
3.
Fritzen
,
C.
, 2005, “
Recent Developments in Vibration-Based Structural Health Monitoring
,”
Structural Health Monitoring 2005: Advancements and Challenges for Implementation
,
F.
Chang
, ed.,
DEStech Publications
, Lancaster, PA, pp.
42
60
.
4.
Rose
,
J.
, 2002, “
A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
273
282
.
5.
Derriso
,
M.
,
Braisted
,
W.
,
Rosenstengel
,
J.
, and
DeSimio
,
M.
, 2004, “
The Structural Health Monitoring of a Mechanically Attached Thermal Protection System
,”
JOM
1047-4838,
56
(
3
), pp.
36
39
.
6.
Kessler
,
S.
, 2002, “
Piezoelectric-Based In-Situ Damage Detection of Composite Materials for Structural Health Monitoring Systems
,” Ph.D. dissertation, Massachusetts Institute of Technology.
7.
Rose
,
J.
, 1999,
Ultrasonic Waves in Solid Media
,
Cambridge University Press
, Cambridge, England.
8.
Alleyne
,
D.
, and
Cawley
,
P.
, 1992, “
The Interaction of Lamb Waves With Defects
,”
IEEE Trans. Sonics Ultrason.
0018-9537,
39
(
3
), pp.
381
397
.
9.
Wilcox
,
P.
,
Lowe
,
M.
, and
Cawley
,
P.
, 2000, “
Lamb and SH Wave Transducer Arrays for the Inspection of Large Areas of Thick Plates
,”
Review of Quantitative Nondestructive Evaluation
,
D.
Thompson
, and
Chimenti
,
D.
, ed.,
American Institute of Physics
, Melville, NY, pp.
1049
1056
.
10.
Lee
,
B.
, and
Staszewski
,
W.
, 2003, “
Modeling of Lamb Waves for Damage Detection in Metallic Structures: Part II. Wave Interactions With Damage
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
815
824
.
11.
Giurgiutiu
,
V.
, 2005, “
Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
(
4
), pp.
291
305
.
12.
Orfanidi
,
S.
, 2006, Electromagnetic Waves and Antennas, draft book available online at http://www.ece.rutgers.edu/∼orfanidi/ewa/http://www.ece.rutgers.edu/∼orfanidi/ewa/
13.
Van Veen
,
B.
, and
Buckley
,
K.
, 1988, “
Beamforming: A Versatile Approach to Spatial Filtering
,”
IEEE ASSP Mag.
0740-7467
5
(
2
), pp.
4
24
.
14.
Knipfer
,
R.
, 1992, “
Sonar Beamforming—An Overview of Its History and Status
,” Naval Undersea Warfare Center Detachment, New London, CT, Technical Report No. 10,003.
15.
Fenn
,
A.
,
Temme
,
D.
,
Delaney
,
W.
, and
Courtney
,
W.
, 2000, “
The Development of Phased-Array Radar Technology
,”
Lincoln Lab. J.
0896-4130,
12
(
2
), pp.
321
338
.
16.
Wells
,
P.
, 1999, “
Ultrasonic Imaging of the Human Body
,”
Rep. Prog. Phys.
0034-4885,
62
, pp.
671
722
.
17.
Liu
,
W.
, and
Giurgiutiu
,
V.
, 2006, “
Finite Element Modeling and Simulation of Piezoelectric Wafer Active Sensors Interaction With the Host Structure for Structural Health Monitoring
,”
Proc. of SPIE’s 13th International Symposium on Smart Structures and Materials
, San Diego, CA Paper No. 6174-107.
18.
Sundararaman
,
S.
,
Adams
,
D.
, and
Rigas
,
E.
, 2005, “
Structural Damage Identification in Homogeneous and Heterogeneous Structures Using Beamforming
,”
Struct. Health Monit.
1475-9217,
4
(
2
), pp.
171
189
.
19.
Moser
,
F.
,
Jacobs
,
L.
, and
Qu
,
J.
, 1999, “
Modeling Elastic Wave Propagation in Waveguides with the Finite Element Method
,”
NDT&E Int.
,
32
, pp.
225
234
.
20.
ABAQUS, 2005,
Analysis User’s Manual
, Version 6.5,
ABAQUS, Inc.
, Providence, RI.
21.
Diamanti
,
K.
,
Hodgkinson
,
J.
, and
Soutis
,
C.
, 2004, “
Detection of Low-velocity Impact Damage in Composite Plates Using Lamb Waves
,”
Struct. Health Monit.
1475-9217,
3
(
1
), pp.
33
41
.
22.
Giurgiutiu
,
V.
,
Bao
,
J.
, and
Zhao
,
W.
, 2003, “
Piezoelectric Wafer Active Sensor Embedded Ultrasonics in Beams and Plates
,”
Exp. Mech.
0014-4851,
43
(
4
), pp.
428
449
.
23.
Derriso
,
M.
,
Olson
,
S.
,
DeSimio
,
M.
, and
Sanders
,
B.
, 2005, “
Development of Automated Damage Detection Techniques
,”
Materials Damage Prognosis
,
J. M.
Larsen
,
J. M.
Larsen
,
L.
Christodoulou
,
J. R.
Calcaterra
,
M. L.
Dent
,
M. M.
Derriso
,
W. J.
Hardman
,
J. W.
Jones
, and
S. M.
Russ
, eds.,
TMS
, Warrendale, PA.
24.
Oppenheim
,
A.
, and
Schafer
,
R.
, 1989,
Discrete-Time Signal Processing
,
Prentice-Hall
, Englewood Cliffs, NJ.
25.
Widrow
,
B.
, and
Stearns
,
S.
, 1985,
Adaptive Signal Processing
,
Prentice-Hall
, Englewood Cliffs, NJ.
You do not currently have access to this content.