A robust iterative algorithm is used to identify the locations and extent of damage in beams using only the changes in their first several natural frequencies. The algorithm, which combines a first-order, multiple-parameter perturbation method and the generalized inverse method, is tested extensively through experimental and numerical means on cantilever beams with different damage scenarios. If the damage is located at a position within 035% or 5095% of the length of the beam from the cantilevered end, while the resulting system equations are severely underdetermined, the minimum norm solution from the generalized inverse method can lead to a solution that closely represents the desired solution at the end of iterations when the stiffness parameters of the undamaged structure are used as the initial stiffness parameters. If the damage is located at a position within 3550% of the length of the beam from the cantilevered end, the resulting solution by using the stiffness parameters of the undamaged structure as the initial stiffness parameters deviates significantly from the desired solution. In this case, a new method is developed to enrich the measurement information by modifying the structure in a controlled manner and using the first several measured natural frequencies of the modified structure. A new method using singular value decomposition is also developed to handle the ill-conditioned system equations that occur in the experimental investigation by using the measured natural frequencies of the modified structure.

1.
Bray
,
D. E.
, and
Stanley
,
R. K.
, 1997,
Nondestructive Evaluation: A Tool in Design, Manufacturing, and Service
, rev. ed.,
CRC Press
, Boca Raton.
2.
Farrar
,
C. R.
, and
Sohn
,
H.
, 2001, “
Condition/Damage Monitoring Methodologies
,” Invited Talk, LA-UR-01-6573. The Consortium of Organizations for Strong Motion Observation Systems (COSMOS) Workshop, Emeryville, CA.
3.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
, 1998, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
0583-1024,
30
(
2
), pp.
91
105
.
4.
Hellier
,
C.
, 2001,
Handbook of Nondestructive Evaluation
,
McGraw-Hill
, New York.
5.
Thomas
,
G. H.
, 1995. “
Overview of Nondestructive Evaluation Technologies
,”
Proc. SPIE
0277-786X,
2455
, pp.
5
9
.
6.
Shull
,
P. J.
, 2002,
Nondestructive Evaluation: Theory, Techniques, and Applications
,
Marcel Dekker
, New York.
7.
Rose
,
J. L.
, 1995, “
Recent Advances in Guided Wave NDE
,”
Proc. of the Institute of Electrical and Electronics Engineers, Ultrasonics Symposium
, Seattle,
IEEE
, New York, Vol.
1
, pp.
761
770
.
8.
Rose
,
J. L.
,
Jiao
,
D.
, and
Spanner
,
J.
, Jr.
, 1996, “
Ultrasonic Guided Wave NDE for Piping
,”
Mater. Eval.
0025-5327,
54
(
11
), pp.
1310
1313
.
9.
Chinn
,
D. J.
,
Quarry
,
M. J.
, and
Rose
,
J. L.
, April 11, 2005, “
Final Report: Guided Acoustic Wave Monitoring of Corrosion in Recovery Boiler Tubing
,” Department of Energy, Lawrence Livermore National Laboratory, Report No. UCRL-TR-211263.
10.
Bartoli
,
I.
,
Lanza di Scalea
,
F.
,
Fateh
,
M.
, and
Viola
,
E.
, 2005, “
Modeling Guided Wave Propagation With Applications to the Long-Range Defect Detection in Railroad Tracks
,”
NDT & E Int.
0963-8695,
38
(
5
), pp.
325
334
.
11.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
, 1996, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review
,” Los Alamos National Laboratory, LA-13070-MS.
12.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
, 1995,
Finite Element Model Updating in Structural Dynamics
,
Kluwer
, Dordrecht.
13.
Ewins
,
D. J.
, 2000,
Modal Testing: Theory, Practice and Applications
,
2nd ed.
,
Research Studies Press
, Baldock, Hertfordshire, UK.
14.
Kabe
,
A. M.
, 1985, “
Stiffness Matrix Adjustment Using Mode Data
,”
AIAA J.
0001-1452,
23
(
9
), pp.
1431
1436
.
15.
Brock
,
J. E.
, 1968, “
Optimal Matrices Describing Linear Systems
,”
AIAA J.
0001-1452,
6
(
7
), pp.
1292
1296
.
16.
Berman
,
A.
, and
Flannelly
,
W. G.
, 1971, “
Theory of Incomplete Models of Dynamic Structures
,”
AIAA J.
0001-1452,
9
(
8
), pp.
1481
1487
.
17.
Baruch
,
M.
, and
Bar Itzhark
,
I. Y.
, 1978, “
Optimal Weighted Orthogonalization of Measured Modes
,”
AIAA J.
0001-1452,
16
(
4
), pp.
346
351
.
18.
Zimmerman
,
D. C.
, and
Kaouk
,
M.
, 1994, “
Structural Damage Detection Using a Minimum Rank Update Theory
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
2
), pp.
222
231
.
19.
Inman
,
D. J.
, and
Minas
,
C.
, 1990, “
Matching Analytical Models With Experimental Modal Data in Mechanical Systems
,”
Control and Dynamics of Systems: Advances in Industrial Systems
,
C. T.
Leondes
, ed.,
Academic Press
, New York, Vol.
37
, pp.
327
363
.
20.
Zimmerman
,
D. C.
, and
Widengren
,
M.
, 1990, “
Correcting Finite Element Models Using a Symmetric Eigenstructure Assignment Technique
,”
AIAA J.
0001-1452,
28
(
9
), pp.
1670
1676
.
21.
Wong
,
C. N.
,
Zhu
,
W. D.
, and
Xu
,
G. Y.
, 2004, “
On an Iterative General-Order Perturbation Method for Multiple Structral Damage Detection
,”
J. Sound Vib.
0022-460X,
273
(
1-2
), pp.
363
386
.
22.
Wu
,
D.
, and
Law
,
S. S.
, 2005, “
Sensitivity of Uniform Load Surface Curvature for Damage Identification in Plate Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
1
), pp.
84
92
.
23.
Salawu
,
O. S.
, 1997, “
Detection of Structural Damage through Changes in Frequency: A Review
,”
Eng. Struct.
0141-0296,
19
(
9
), pp.
718
723
.
24.
Dimarogonas
,
A. D.
, 1996, “
Vibration of Cracked Structures: A State of the Art Review
,”
Eng. Fract. Mech.
0013-7944,
55
(
5
), pp.
831
857
.
25.
Adams
,
R. D.
,
Cawley
,
P.
,
Pye
,
C. J.
, and
Stone
,
B. J.
, 1978, “
A Vibration Technique for Non-destructively Assessing the Integrity of Structures
,”
J. Mech. Eng. Sci.
0022-2542,
20
(
2
), pp.
93
100
.
26.
Capecchi
,
D.
, and
Vestroni
,
F.
, 1999, “
Monitoring of Structural Systems by Using Frequency Data
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
28
(
5
), pp.
447
461
.
27.
Cawley
,
P.
, and
Adams
,
R. D.
, 1979, “
The Location of Defects in Structures From Measurements of Natural Frequencies
,”
J. Sound Vib.
0022-460X,
14
(
2
), pp.
49
57
.
28.
Morassi
,
A.
, 2001, “
Identification of a Crack in a Rod Based on Changes in a Pair of Natural Frequencies
,”
J. Sound Vib.
0022-460X,
242
(
4
), pp.
577
596
.
29.
Patil
,
D. P.
, and
Maiti
,
S. K.
, 2005, “
Experimental Verification of a Method of Detection of Multiple Cracks in Beams Based on Frequency Measurements
,”
J. Sound Vib.
0022-460X,
281
(
1-2
), pp.
439
451
.
30.
Liang
,
R. Y.
,
Hu
,
J.
, and
Choy
,
F.
, 1992, “
Quantitative NDE Technique for Assessing Damages in Beam Structures
,”
J. Eng. Mech.
0733-9399,
118
(
7
), pp.
1468
1487
.
31.
Morassi
,
A.
, and
Rollo
,
M.
, 2001, “
Identification of Two Cracks in a Simply Supported Beam From Minimal Frequency Measurements
,”
J. Vib. Control
1077-5463,
7
(
5
), pp.
729
739
.
32.
Hu
,
J.
, and
Liang
,
R. Y.
, 1993, “
An Integrated Approach to Detection of Cracks Using Vibration Characteristics
,”
J. Franklin Inst.
0016-0032,
330
(
5
), pp.
841
853
.
33.
Ruotolo
,
R.
, and
Surace
,
C.
, 1997, “
Damage Assessment of Multiple Cracked Beams: Numerical Results and Experimental Validation
,”
J. Sound Vib.
0022-460X,
206
(
4
), pp.
567
588
.
34.
Ostachowicz
,
W. M.
, and
Krawczuk
,
M.
, 1991, “
Analysis of the Effect of Cracks on the Natural Frequencies of a Cantilever Beam
,”
J. Sound Vib.
0022-460X,
150
(
2
), pp.
191
201
.
35.
Shifrin
,
E. I.
, and
Ruotolo
,
R.
, 1999, “
Natural Frequencies of a Beam With an Arbitrary Number of Cracks
,”
J. Sound Vib.
0022-460X,
222
(
3
), pp.
409
423
.
36.
Lew
,
J. S.
, 1995, “
Using Transfer Function Parameter Changes for Damage Detection of Structures
,”
AIAA J.
0001-1452,
33
(
11
), pp.
2189
2193
.
37.
Solbeck
,
J. A.
, and
Ray
,
L. R.
, 2006, “
Damage Identification Using Sensitivity-Enhancing Control and Identified Models
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
2
), pp.
210
220
.
38.
Vestroni
,
F.
, and
Capecchi
,
D.
, 2000, “
Damage Detection in Beam Structures Based on Frequency Measurements
,”
J. Eng. Mech.
0733-9399,
126
(
7
), pp.
761
768
.
39.
Kim
,
J. T.
,
Ryu
,
Y. S.
,
Cho
,
H. M.
, and
Stubbs
,
N.
, 2003, “
Damage Identification in Beam-Type Structures: Frequency-Based Method vs. Mode-Shape-Based Method
,”
Eng. Struct.
0141-0296,
25
(
1
), pp.
57
67
.
40.
Vestroni
,
F.
, and
Capecchi
,
D.
, 1996, “
Damage Evaluation in Cracked Vibrating Beams Using Experimental Frequencies and Finite Element Models
,”
J. Vib. Control
1077-5463,
2
(
1
), pp.
69
86
.
41.
Davini
,
C.
,
Gatti
,
F.
, and
Morassi
,
A.
, 1993, “
A Damage Analysis of Steel Beams
,”
Meccanica
0025-6455,
28
(
1
), pp.
27
37
.
42.
Stubbs
,
N.
, and
Osegueda
,
R.
, 1990, “
Global Non-destructive Damage Evaluation in Solids
,”
Int. J. Anal. Exp. Modal Anal.
0886-9367,
5
(
2
), pp.
67
79
.
43.
Stubbs
,
N.
, and
Osegueda
,
R.
, 1990, “
Global Damage Detection in Solids—Experimental Verification
,”
Int. J. Anal. Exp. Modal Anal.
0886-9367,
5
(
2
), pp.
81
97
.
44.
Chapelle
,
D.
, “
OpenFEM: An Open-Source Finite Element Toolbox
,” INRIA 19 July 2002: 16 September 2006, ⟨http://www-rocq.inria.fr/OpenFEM/Old/index.htmlhttp://www-rocq.inria.fr/OpenFEM/Old/index.html
45.
Petyt
,
M.
, 1990,
Introduction to Finite Element Vibration Analysis
,
Cambridge University Press
, Cambridge, England.
46.
Timoshenko
,
S. P.
, 1921, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
0031-8086,
41
, pp.
744
746
.
47.
Wolf
,
F. P.
, and
Ueberreiter
,
K.
, 1971, “
Untersuchung des viskoelastischen Verhaltens von Polymethylmethacrylat mit Hilfe von Biegeschwingungen
,”
Kolloid Z. Z. Polym.
0023-2904,
245
(
1
), pp.
399
408
.
48.
Pickett
,
G.
, 1945, “
Equations for Computing Elastic Constants from Flexural and Torsional Resonant Frequencies of Vibration of Prisms and Cylinders
,”
ASTM Proceedings
,
ASTM
, Philadelphia, Vol.
45
, pp.
846
865
.
49.
Tefft
,
W. E.
, 1960, “
Numerical Solution of the Frequency Equations for the Flexural Vibration of Cylindrical Rods
,”
J. Res. Natl. Bur. Stand.
0160-1741,
64B
, pp.
237
242
.
50.
Spence
,
G. B.
, and
Seldin
,
E. J.
, 1970, “
Sonic Resonances of a Bar and Compound Torsion Oscillator
,”
J. Appl. Phys.
0021-8979,
41
(
8
), pp.
3383
3389
.
51.
Heybey
,
O.
, and
Karasz
,
F. E.
, 1976, “
Experimental Study of Flexural Vibrations in Thick Beams
,”
J. Appl. Phys.
0021-8979,
47
(
7
), pp.
3252
3260
.
52.
Kaneko
,
T.
, 1978, “
An Experimental Study of the Timoshenko’s Shear Coefficient for Flexurally Vibrating Beams
,”
J. Phys. D
0022-3727,
11
(
14
), pp.
1979
1988
.
53.
Stephen
,
N. G.
, 1981, “
Considerations on Second Order Beam Theories
,”
Int. J. Solids Struct.
0020-7683,
17
(
3
), pp.
325
333
.
You do not currently have access to this content.