This paper presents a dynamic model for the vibration of a rotating Rayleigh beam subjected to a three-directional load acting on the surface of the beam and moving in the axial direction. The model takes into account the axial movement of the axial force component. More significantly, the bending moment produced by this force component is included in the model. Lagrange’s equations of motion for the modal coordinates are derived based on the assumed mode method and then solved by a fourth-order Runge-Kutta algorithm. It is found that the bending moment induced by the axial force component has a significant influence on the dynamic response of the shaft, even when the axial force and speed are low and, hence, must be considered in such problems as turning operations.

1.
Lee
,
C.
,
Katz
,
W. R.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
, 1987, “
Modal Analysis of a Distributed Parameter Rotating Shaft
,”
J. Sound Vib.
0022-460X,
122
, pp.
119
130
.
2.
Katz
,
W. R.
,
Lee
,
C.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
, 1987, “
The Dynamic Response of a Rotating Shaft Subject to a Moving Load
,”
J. Sound Vib.
0022-460X,
122
, pp.
134
148
.
3.
Huang
,
S. C.
, and
Hsu
,
B. S.
, 1990, “
Resonant Phenomena of a Rotating Cylindrical Shell Subjected to a Harmonic Moving Load
,”
J. Sound Vib.
0022-460X,
136
, pp.
215
228
.
4.
Huang
,
S. C.
, and
Chen
,
J. S.
, 1990, “
Dynamic Response of Spinning Orthotropic Beams Subjected to Moving Harmonic Forces
,”
J. Chin. Soc. Mech. Eng.
0257-9731,
11
, pp.
63
73
.
5.
Argento
,
A.
, and
Scott
,
R. A.
, 1992, “
Dynamic Response of a Rotating Beam Subjected to an Accelerating Distributed Surface Force
,”
J. Sound Vib.
0022-460X,
157
(
2
), pp.
221
231
.
6.
Han
,
R. P. S.
, and
Zu
,
J. W. Z.
, 1992, “
Modal Analysis of Rotating Shafts: A Body-Fixed Approach
,”
J. Sound Vib.
0022-460X,
156
(
1
), pp.
1
16
.
7.
Zu
,
J. W. Z.
, and
Han
,
R. P. S.
, 1994, “
Dynamic-Response of a Spinning Timoshenko Beam With General Boundary-Conditions and Subjected to a Moving Load
,”
ASME J. Appl. Mech.
0021-8936,
61
(
1
), pp.
152
160
.
8.
Sinha
,
S. K.
, 1992, “
On General Conditions of Rotordynamic Stability Under Combined Axial Forces and Torque
,”
ASME J. Appl. Mech.
0021-8936,
59
(
1
), pp.
225
228
.
9.
Lee
,
H. P.
, 1995, “
Dynamic Response of a Rotating Timoshenko Shaft Subject to Axial Forces and Moving Loads
,”
J. Sound Vib.
0022-460X,
181
(
1
), pp.
169
177
.
10.
Argento
,
A.
, and
Morano
,
H. L.
, 1995, “
A Spinning Beam Subjected to a Moving Deflection Dependent Load. 2: Parametric Resonance
,”
J. Sound Vib.
0022-460X,
182
(
4
), pp.
617
622
.
11.
Katz
,
W. R.
,
Lee
,
C.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
, 1987, “
Dynamic Stability and Response of a Beam Subjected to a Deflection-Dependent Moving Load
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
109
, pp.
361
365
.
12.
Huang
,
Y. M.
, and
Lee
,
C. Y.
, 1998, “
Dynamics of a Rotating Rayleigh Beam
,”
Int. J. Mech. Sci.
0020-7403,
40
(
8
), pp.
779
792
.
13.
Zibdeh
,
H. S.
, and
Juma
,
H. S.
, 1999, “
Dynamic Response of a Rotating Beam Subjected to a Random Moving Load
,”
J. Sound Vib.
0022-460X,
223
(
5
), pp.
741
758
.
14.
El-Saeidy
,
F. M. A.
, 2000, “
Finite Element Dynamic Analysis of a Rotating Shaft With or Without Nonlinear Boundary Conditions Subjected to a Moving Load
,”
Nonlinear Dyn.
0924-090X
21
(
4
), pp.
377
407
.
15.
Chen
,
L.-W.
, and
Ku
,
D.-M.
, 1992, “
Dynamic Stability of a Cantilever Shaft-Disk System
,”
ASME J. Vibr. Acoust.
0739-3717,
181
(
1
), pp.
326
329
.
16.
Sheu
,
G. J.
, and
Yang
,
S. M.
, 2005, “
Dynamic Analysis of a Spinning Rayleigh Beam
,”
Int. J. Mech. Sci.
0020-7403,
47
(
2
), pp.
157
169
.
17.
Fryba
,
L.
, 1999,
Vibration of Solids and Structures under Moving Loads
,
3rd ed.
,
Thomas Telford
, London.
18.
Flom
,
D. G.
,
Komanduri
,
R.
, and
Lee
,
M.
, 1984, “
High Speed Machining of Metals
,”
Annu. Rev. Mater. Sci.
0084-6600,
14
, pp.
231
278
.
You do not currently have access to this content.