This paper is devoted to mathematical models of problems of nonlinear vibrations of viscoelastic, orthotropic, and isotropic cylindrical panels. The models are based on Kirchhoff-Love hypothesis and Timoshenko generalized theory (including shear deformation and rotatory inertia) in a geometrically nonlinear statement. A choice of the relaxation kernel with three rheological parameters is justified. A numerical method based on the use of quadrature formulas for solving problems in viscoelastic systems with weakly singular kernels of relaxation is proposed. With the help of the Bubnov-Galerkin method in combination with a numerical method, the problems in nonlinear vibrations of viscoelastic orthotropic and isotropic cylindrical panels are solved using the Kirchhoff-Love and Timoshenko hypothesis. Comparisons of the results obtained by these theories, with and without taking elastic waves propagation into account, are presented. In all problems, the convergence of Bubnov-Galerkin’s method has been investigated. The influences of the viscoelastic and anisotropic properties of a material, on the process of vibration, are discussed in this work.

1.
Il’yushin
,
A. A.
, and
Pobedrya
,
B. E.
, 1970,
Fundamentals of the Mathematical Theory of Thermoviscoelasticity
(in Russian),
Nauka
,
Moscow
.
2.
Christensen
,
R. M.
, 1971,
Theory of Viscoelasticity
,
Academic Press
,
New York
.
3.
Rabotnov
,
Yu. N.
, 1977,
Elements of the Hereditary Mechanics of Solids
(in Russian),
Nauka
,
Moscow
.
4.
Malmeyster
,
A. K.
,
Tamuzh
,
V. P.
, and
Тeters
,
G. S.
, 1980,
Resistance of Composite Materials
(in Russian),
Zinatne
,
Riga
.
5.
Bogdanovich
,
A. E.
, 1993,
Nonlinear Dynamic Problems for Composite Cylindrical Shells
,
Elsevier
,
New York
.
6.
Ambartsumyan
,
S. A.
, 1970,
Theory of Anisotropic Plates
,
Technomic
,
Stamford
.
7.
Koltunov
,
M. A.
, 1976,
Creep and Relaxation
(in Russian),
Visshaya shkola
,
Moscow
.
8.
Volmir
,
A. S.
, 1972,
The Nonlinear Dynamics of Plates and Shells
(in Russian),
Nauka
,
Moscow
.
9.
Vel
,
S. S.
, and
Baillargeon
,
B. P.
, 2005, “
Analysis of Static Deformation, Vibration and Active Damping of Cylindrical Composite Shells With Piezoelectric Shear Actuators
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
4
), pp.
395
407
.
10.
Shiau
,
L.-C.
, and
Kuo
,
S.-Y.
, 2006, “
Free Vibration of Thermally Buckled Composite Sandwich Plates
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
1
7
.
11.
Dimitris
,
V.
, and
Dimitris
,
A. S.
, 2006, “
Small-Amplitude Free-Vibration Analysis of Piezoelectric Composite Plates Subject to Large Deflections and Initial Stresses
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
41
49
.
12.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2006, “
A Spectral Finite Element Model for Wave Propagation Analysis in Laminated Composite Plate
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
4
), pp.
477
488
.
13.
Donnell
,
L. H.
, 1976,
Beams, Plates, and Shells
,
McGraw-Hill
,
New York
.
14.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
, 1987,
Theory of Plates and Shells
,
2nd ed.
McGraw-Hill
,
New York
.
15.
Reissner
,
E.
, 1945, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
12
, pp.
69
88
.
16.
Mindlin
,
R. D.
, 1951, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
19
, pp.
31
38
.
17.
Eshmatov
,
B. Kh.
, 2004, “
Nonlinear Vibrations of Viscoelastic Orthotropic Cylindrical Shells in View of Propagation of Elastic Waves
,”
Materials of XVII Session of the International School on Models of Mechanics of the Continuous Environment
, Kazan, Russia, pp.
186
191
.
18.
Eshmatov
,
B. Kh.
, 2005, “
Nonlinear Vibrations of Viscoelastic Orthotropic Plates From Composite Materials
,”
3rd MIT Conference on Computational Fluid and Solid Mechanics
, Boston.
19.
Eshmatov
,
B. Kh.
, 2006, “
Dynamic Stability of Viscoelastic Plates at Growing Compressing Loadings
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
47
(
2
), pp.
289
297
.
20.
Eshmatov
,
B. Kh.
, 2006, “
Nonlinear Vibration Analysis of Viscoelastic Plates Based on a Refined Timoshenko Theory
,”
Int. Appl. Mech.
1063-7095,
42
(
5
), pp.
596
605
.
21.
Sahu
,
S. K.
, and
Datta
,
P. K.
, 2003, “
Dynamic Stability of Laminated Composite Curved Panels With Cutouts
,”
J. Eng. Mech.
0733-9399,
129
(
11
), pp.
1245
1253
.
22.
Kumar
,
L. R.
,
Datta
,
P. K.
, and
Prabhakara
,
D. L.
, 2003, “
Tension Buckling and Dynamic Stability Behavior of Laminated Composite Doubly Curved Panels Subjected to Partial Edge Loading
,”
Compos. Struct.
0263-8223,
60
, pp.
171
181
.
23.
Singh
,
A. V.
, and
Kumar
,
V.
, 1998, “
On Free Vibrations of Fiber Reinforced Doubly Curved Panels, Part 2: Applications
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
1
), pp.
295
300
.
24.
Shirakawa
,
K.
, 1983, “
Effects of Shear Deformation and Rotary Inertia on Vibration and Buckling of Cylindrical Shells
,”
J. Sound Vib.
0022-460X,
91
(
3
), pp.
425
437
.
25.
Popov
,
A. A.
,
Thompson
,
J. M. T.
, and
Croll
,
J. G. A.
, 1998, “
Bifurcation Analyses in the Parametrically Excited Vibrations of Cylindrical Panels
,”
Nonlinear Dyn.
0924-090X,
17
, pp.
205
225
.
26.
Hui
,
D.
, 1984, “
Influence of Geometric Imperfections and In-Plate Constraints of Nonlinear Vibrations of Simply Supported Cylindrical Panels
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
383
390
.
27.
Raouf
,
R. A.
, 1993, “
A Qualitative Analysis of the Nonlinear Dynamic Characteristics of Curved Orthotropic Panels
,”
Composites Eng.
0961-9526,
3
, pp.
1101
1110
.
28.
Xia
,
Z. Q.
, and
Lukasiewicz
,
S.
, 1995, “
Non-Linear Analysis of Damping Properties of Cylindrical Sandwich Panels
,”
J. Sound Vib.
0022-460X,
186
(
1
), pp.
55
69
.
29.
van Campen
,
D. H.
,
Bouwman
,
V. P.
,
Zhang
,
G. Q.
,
Zhang
,
J.
, and
ter Weeme
,
B. J. W.
, 2002, “
Semi-Analytical Stability Analysis of Doubly-Curved Orthotropic Shallow Panels—Considering the Effects of Boundary Conditions
,”
Int. J. Non-Linear Mech.
0020-7462
37
, pp.
659
667
.
30.
Chia
,
C. Y.
, 1987, “
Non-Linear Free Vibration and Postbuckling of Symmetrically Laminated Orthotropic Imperfect Shallow Cylindrical Panels With Two Adjacent Edges Simply Supported and the Other Edges Clamped
,”
Int. J. Solids Struct.
0020-7683,
23
, pp.
1123
1132
.
31.
Librescu
,
L.
, and
Chang
,
M.-Y.
, 1993, “
Effects of Geometric Imperfections on Vibration of Compressed Shear Deformable Laminated Composite Curved Panels
,”
Acta Mech.
0001-5970,
96
, pp.
203
224
.
32.
Librescu
,
L.
,
Lin
,
W.
,
Nemeth
,
M. P.
, and
Starnes
, Jr.
J. H.
, 1996, “
Vibration of Geometrically Imperfect Panels Subjected to Thermal and Mechanical Loads
,”
J. Spacecr. Rockets
0022-4650,
33
, pp.
285
291
.
33.
Sheeinman
,
I.
, and
Reichman
,
Y.
, 1992, “
A Study of Buckling and Vibration of Laminated Shallow Curved Panels
,”
Int. J. Solids Struct.
0020-7683,
29
(
11
), pp.
1329
1338
.
34.
Soldatos
,
K. P.
, and
Messina
,
A.
, 2000, “
The Influence of Boundary Conditions and Transverse Shear on the Vibration of Angle-Ply Laminated Plates, Circular Cylinders and Cylindrical Panels
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
2385
2409
.
35.
Wang
,
X.
, 1999, “
Numerical Analysis of Moving Orthotropic Thin Plates
,”
Comput. Struct.
0045-7949,
70
, pp.
467
486
.
36.
Kubenko
,
V. D.
, and
Koval’chuk
,
P. S.
, 2004, “
Influence of Initial Geometric Imperfections on the Vibrations and Dynamic Stability of Elastic Shells
,”
Int. Appl. Mech.
1063-7095,
40
(
8
), pp.
847
877
.
37.
Kayuk
,
Ya. F.
, and
Hijnyak
,
V. K.
, 1990, “
Nonlinear Vibration of the Rectangular Plate Caused by Action of Mobile Loading
,”
Int. Appl. Mech.
1063-7095,
26
(
6
), pp.
122
125
.
38.
Awrejcewicz
,
J.
, and
Krys’ko
,
V. A.
, 2003,
Nonclassical Thermoelastic Problems in Nonlinear Dynamics of Shells
,
Springer-Verlag
,
Berlin
.
39.
Amabili
,
M.
, 2005, “
Nonlinear Vibrations of Circular Cylindrical Panels
,”
J. Sound Vib.
0022-460X,
281
, pp.
509
535
.
40.
Mukherjee
,
S.
, and
Kollmann
,
F. G.
, 1985, “
A New Rate Principle Suitable for Analysis of Inelastic Deformation of Plates and Shells
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
533
535
.
41.
Bao
,
Z.
,
Mukherjee
,
S.
,
Roman
,
M.
, and
Aubry
,
N.
, 2004, “
Nonlinear Vibrations of Beams, Strings, Plates, and Membranes Without Initial Tension
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
551
559
.
42.
Rossikhin
,
Yu. A.
, and
Shitikova
,
M. V.
, 2006, “
Analysis of Free Non-Linear Vibrations of a Viscoelastic Plate Under the Conditions of Different Internal Resonances
,”
Int. J. Non-Linear Mech.
0020-7462,
41
, pp.
313
325
.
43.
Cederbaum
,
G.
, 1991, “
Dynamic Instability of Viscoelastic Orthotropic Laminated Plates
,”
Compos. Struct.
0263-8223,
19
, pp.
131
44
.
44.
Sun
,
Y. X.
, and
Zhang
,
S. Y.
, 2001, “
Chaotic Dynamic Analysis of Viscoelastic Plates
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
1195
1208
.
45.
Cederbaum
,
G.
, and
Touati
,
D.
, 2002, “
Postbuckling Analysis of Imperfect Non-Linear Viscoelastic Cylindrical Panels
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
757
762
.
46.
Kim
,
T.-W.
, and
Kim
,
J.-H.
, 2002, “
Nonlinear Vibration of Viscoelastic Laminated Composite Plates
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2857
2870
.
47.
Eshmatov
,
Kh.
, 1991,
Integrated Method of Mathematical Modelling of Problems of Dynamics of Viscoelastic Systems
(in Russian), Avtoreferat diss. doc. teh. Nauk, Kiev.
48.
Badalov
,
F. B.
,
Eshmatov
,
Kh.
, and
Yusupov
,
M.
, 1987, “
About Some Methods of the Decision of Systems Integro-Differential Equations Meeting in Problems Viscoelasticity
,”
J. Appl. Math. Mech.
0021-8928,
51
, pp.
867
871
.
49.
Verlan
,
A. F.
, and
Eshmatov
,
B. Kh.
, 2005, “
Mathematical Simulation of Oscillations of Orthotropic Viscoelastic Plates With Regards to Geometric Nonlinearity
,”
Int. J. Electro. Mode.
,
27
(
4
), pp.
3
17
.
You do not currently have access to this content.