The grazing bifurcation and periodic motion switching of the harmonically forced, piecewise linear system with impacting are investigated. The generic mappings relative to the discontinuous boundaries of this piecewise system are introduced. Based on such mappings, the corresponding grazing conditions are obtained. The mapping structures are developed for the analytical prediction of periodic motions in such a system. The local stability and bifurcation conditions for specified periodic motions are obtained. The regular and grazing, periodic motions are illustrated. The grazing is the origin of the periodic motion switching for this system. Such a grazing bifurcation cannot be estimated through the local stability analysis. This model is applicable to prediction of periodic motions in nonlinear dynamics of gear transmission systems.

1.
Luo
,
A. C. J.
, and
Chen
,
L. D.
, 2005, “
Periodic Motion and Grazing in a Harmonically Forced, Piecewise, Linear Oscillator with Impacts
,”
Chaos, Solitons Fractals
0960-0779,
24
, pp.
567
578
.
2.
Luo
,
A. C. J.
, and
Chen
,
L. D.
, 2005, “
The Grazing Mechanism of the Strange Attractor Fragmentation of a Harmonically Forced, Piecewise, Linear Oscillator with Impacts
,”
IMechE Proceedings Part K: Journal of Multi-Body Dynamics
,
220
, pp.
35
51
.
3.
Luo
,
A. C. J.
, 2006, “
Grazing and Chaos in a Periodically Forced, Piecewise Linear System
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
28
34
.
4.
Buckungham
,
E.
, 1931,
Dynamic Loads on Gear Teeth
,
American Special Publication
,
New York
.
5.
Buckungham
,
E.
, 1949,
Analytical Mechanics of Gears
,
McGraw-Hill
,
New York
.
6.
Ozguven
,
H. N.
, and
House
,
D. R.
, 1988, “
Mathematical Models Used in Gear Dynamics—A Review
,”
J. Sound Vib.
0022-460X,
121
, pp.
383
411
.
7.
Pfeiffer
,
F.
, 1984, “
Mechanische Systems Mit Unstetigen Ubergangen
,”
Ing.-Arch.
0020-1154,
54
, pp.
232
240
.
8.
Karagiannis
,
K.
, and
Pfeiffer
,
F.
, 1991, “
Theoretical and Experimental Investigations of Gear Box
,”
Nonlinear Dyn.
0924-090X,
2
, pp.
367
387
.
9.
Hartog
,
J. P. D.
, and
Mikina
,
S. J.
, 1932, “
Forced Vibrations with Non-Linear Spring Constants
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
157
164
.
10.
Comparin
,
R. J.
, and
Singh
,
R.
, 1989, “
Nonlinear Frequency Response Characteristics of an Impact Pair
,”
J. Sound Vib.
0022-460X,
134
, pp.
49
75
.
11.
Kahraman
,
A.
, and
Singh
,
R.
, 1990, “
Nonlinear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
0022-460X,
142
, pp.
49
75
.
12.
Theodossiades
,
S.
, and
Natsiavas
,
S.
, 2000, “
Non-Linear Dynamics of Gear-Pair Systems with Periodic Stiffness and Backlash
,”
J. Sound Vib.
0022-460X,
229
(
2
), pp
287
310
.
13.
Wong
,
C. W.
,
Zhang
,
W. S.
, and
Lau
,
S. L.
, 1991, “
Periodic Forced Vibration of Unsymmetrical Piecewise Linear Systems by Incremental Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
149
, pp.
91
105
.
14.
Kim
,
Y. B.
, and
Noah
,
S. T.
, 1991, “
Stability and Bifurcation Analysis of Oscillators with Piecewise-Linear Characteristics: A General Approach
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
545
553
.
15.
Kim
,
Y. B.
, 1998, “
Multiple Harmonic Balance Method for Aperiodic Vibration of a Piecewise-Linear System
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
181
187
.
16.
Shaw
,
S. W.
, and
Holmes
,
P. J.
, 1983, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
0022-460X,
90
(
1
), pp.
121
155
.
17.
Natsiavas
,
S.
, 1989, “
Periodic Response and Stability of Oscillators with Symmetric Trilinear Restoring Force
,”
J. Sound Vib.
0022-460X,
134
(
2
), pp.
315
331
.
18.
Li
,
G. X.
,
Rand
,
R. H.
, and
Moon
,
F. C.
, 1990, “
Bifurcation and Chaos in a Forced Zero-Stiffness Impact Oscillator
,”
Int. J. Non-Linear Mech.
0020-7462,
25
(
4
), pp.
414
432
.
19.
Kleczka
,
M.
,
Kreuzer
,
E.
, and
Schiehlen
,
W.
, 1992, “
Local and Global Stability of a Piecewise Linear Oscillator
,”
Philos. Trans.: Phys. Sci. Eng., Nonlinear Dyn. Engin. Syst.
,
338
(
1651
), pp.
533
546
.
20.
Luo
,
A. C. J.
, and
Menon
,
S.
, 2004, “
Global Chaos in a Periodically Forced, Linear System with a Dead-Zone Restoring Force
,”
Chaos, Solitons Fractals
0960-0779,
19
, pp.
1189
1199
.
21.
Nordmark
,
A. B.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
, pp.
279
297
.
22.
di Bernardo
,
M.
,
Budd.
,
C. J.
, and
Champneys
,
A. R.
, 2001, “
Normal Form Maps for Grazing Bifurcation in n-dimensional Piecewise-Smooth Dynamical Systems
,”
Physica D
0167-2789,
160
, pp.
222
254
.
23.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A. B.
, 2002, “
Bifurcation of Dynamical Systems with Sliding: Derivation of Normal Form Mappings
,”
Physica D
0167-2789,
170
, pp.
175
205
.
24.
Ha
,
J.-L.
,
Fung
,
R.-F.
,
Han
,
G.-F.
, and
Chang
,
J. R.
, 2006, “
Effects of Frictional Models on the Dynamic Response of the Impact Drive Mechnanism
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
416
419
.
25.
Luo
,
A. C. J.
, 2004, “
On the Symmetry of Solutions in Non-Smooth Dynamical Systems with Two Constraints
,”
J. Sound Vib.
0022-460X,
273
, pp.
1118
1126
.
26.
Luo
,
A. C. J.
, 2005, “
A Theory for Non-smooth Dynamic Systems on the Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
, pp.
1
55
.
27.
Luo
,
A. C. J.
, 2006,
Singularity and Dynamics on Discontinuous Vector Fields
,
Elsevier
,
Amsterdam
.
28.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2006, “
On the Mechanism of Stick and Nonstick, Periodic Motions in a Forced Linear Oscillator with Dry Friction
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
97
105
.
29.
Luo
,
A. C. J.
, and Gegg B. C., 2006, “
Grazing Phenomena in a Periodically Forced, Friction-Induced, Linear Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
11
, pp.
132
168
.
30.
Luo
,
A. C. J.
, 2005, “
The Symmetry of Steady-State Solutions in Non-Smooth Dynamical Systems with Two Constraints
,”
IMechE Proceedings Part K: Journal of Multi-Body Dynamics
,
219
, pp.
109
124
.
31.
Luo
,
A. C. J.
, 2005, “
The Mapping Dynamics of Periodic Motions for a Three-Piecewise Linear System Under a Periodic Excitation
,”
J. Sound Vib.
0022-460X,
283
, pp.
723
748
.
This content is only available via PDF.
You do not currently have access to this content.