Experimental characterization of high dimensional dynamic systems sometimes uses the proper orthogonal decomposition (POD). If there are many measurement locations and relatively fewer sensors, then steady-state behavior can still be studied by sequentially taking several sets of simultaneous measurements. The number required of such sets of measurements can be minimized if we solve a combinatorial optimization problem. We aim to bring this problem to the attention of engineering audiences, summarize some known mathematical results about this problem, and present a heuristic (suboptimal) calculation that gives reasonable, if not stellar, results.

1.
Cusumano
,
J. P.
, and
Bai
,
B.-Y.
, 1993, “
Period-Infinity Periodic Motions, Chaos, and Spatial Coherence in a 10 Degree of Freedom Impact Oscillator
,”
Chaos, Solitons Fractals
0960-0779,
3
, pp.
515
535
.
2.
Cusumano
,
J. P.
,
Sharkady
,
M. T.
, and
Kimble
,
B. W.
, 1994, “
Experimental Measurements of Dimensionality and Spatial Coherence in the Dynamics of a Flexible-Beam Impact Oscillator
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
347
, pp.
421
438
.
3.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics
,
Cambridge University Press
, Cambridge, UK.
4.
Feeny
,
B. F.
, and
Kappagantu
,
R.
, 1998, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
0022-460X,
211
, pp.
607
616
.
5.
Ravindra
,
B.
, 1999, “
Comments on ‘On the Physical Interpretation of Proper Orthogonal Modes in Vibrations’
,”
J. Sound Vib.
0022-460X,
219
, pp.
189
192
.
6.
Chatterjee
,
A.
, 2000, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
0011-3891,
78
(
7
), pp.
808
817
.
7.
Papadimitriou
,
C. H.
, and
Steiglitz
,
K.
, 2003,
Combinatorial Optimization: Algorithms and Complexity, Eastern Economy
ed.,
Prentice-Hall
, New Delhi, India.
8.
Wilson
,
R. M.
, 1972, “
An Existence Theory for Pairwise Balanced Designs: I, Composition Theorems and Morphisms
,”
J. Comb. Theory, Ser. A
0097-3165,
13
, pp.
220
245
.
9.
Wilson
,
R. M.
, 1972, “
An Existence Theory for Pairwise Balanced Designs: II, The Structure of PBD-Closed Sets and the Existence Conjectures
,”
J. Comb. Theory, Ser. A
0097-3165,
13
, pp.
246
273
.
10.
Wilson
,
R. M.
, 1975, “
An Existence Theory for Pairwise Balanced Designs: III, A Proof of the Existence Conjectures
,”
J. Comb. Theory, Ser. A
0097-3165,
18
, pp.
71
79
.
11.
Birkhoff
,
G.
, and
MacLane
,
S.
, 1941,
Survey of Modern Algebra
,
Macmillan Co.
, New York.
12.
Dinitz
,
J. H.
, and
Stinson
,
D. R.
, 1992,
A Brief Introduction to Design Theory
,
Wiley
, New York.
You do not currently have access to this content.