Viscoelastic materials are often used to add damping to metal structures, usually via the constrained layer damping method. The added damping depends strongly on material temperature and frequency, as do the underlying material properties of the viscoelastomer. Several standardized test methods are available to characterize the dynamic material properties of viscoelastomers. However, they rely on limited test data which is extrapolated using the time—temperature superposition technique. The authors have found that the different testing methods typically produce significantly different dynamic material properties, or “master curves.” An approach for inferring viscoelastomer dynamic moduli with better accuracy is suggested here. Several metal bars are treated using constrained layer damping. Experimental modal analyses are conducted on the bars at different temperatures to produce sets of system resonance frequencies and loss factors. Corresponding finite element (FE) models of the treated bars are analyzed using assumed viscoelastomer material properties based on master curves generated using a standardized test technique. The parameters which define the master curves are adjusted by trial and error until the FE-simulated system loss factors match those of the measurements. The procedure is demonstrated on two viscoelastomers with soft and stiff moduli.

1.
ANSI, 1998,
Resonance Method for Measuring the Dynamic Mechanical Properties of Viscoelastic Materials
,
ANSI S2.22-1998
, New York.
2.
ANSI, 1998,
Single Cantilever Beam Method for Measuring the Dynamic Mechanical Properties of Viscoelastic Materials
,
ANSI S2.23-1998
, New York.
3.
ASTM, 1998,
ASTM E 756-98, Standard Test Method for Measuring Vibration-Damping Properties of Materials
,
ASTM
, Philadelphia, PA.
4.
Nashif
,
A. D.
,
Jones
,
D. I.G.
, and
Henderson
,
J. P.
, 1985,
Vibration Damping
,
Wiley
, New York.
5.
Ross
,
D.
,
Ungar
,
E. E.
, and
Kerwin
,
E. M.
, 1959, “
Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminae
,”
Structural Damping
,
J. E.
Ruzicka
, ed.,
ASME
, New York, Sec. 3.
6.
Ferry
,
J. D.
, 1980,
Viscoelastic Properties of Polymers
,
3rd ed.
,
Wiley
, New York.
7.
Hartmann
,
B.
,
Lee
,
G. F.
,
Lee
,
J. D.
, and
Fedderly
,
J. J.
, 1994, “
Molecular Engineering of Polymer Relaxations
,”
Proceedings for Relaxation Phenomena in Polymers Symposium
, Dearborn, MI.
8.
Wojtowicki
,
J. L.
,
Jaouen
,
L.
, and
Panneton
,
R.
, 2004, “
New Approach for the Measurement of Damping Properties of Materials Using the Oberst Beam
,”
Rev. Sci. Instrum.
0034-6748,
75
(
8
), pp.
2569
2574
.
9.
Johnson
,
C. D.
, and
Kienholz
,
D. A.
, 1982, “
Finite Element Prediction of Damping in Structures With Constrained Viscoelastic Layers
,”
AIAA J.
0001-1452,
20
(
9
), pp.
1284
1290
.
10.
Moreira
,
R.
, and
Rodrigues
,
J. D.
, 2004, “
Constrained Damping Layer Treatments: Finite Element Modeling
,”
J. Vib. Control
1077-5463,
10
, pp.
575
595
.
11.
Guillot
,
F. M.
, and
Trivett
,
D. H.
, 2003, “
A Dynamic Young’s Modulus Measurement System for Highly Compliant Polymers
,”
J. Acoust. Soc. Am.
0001-4966,
114
(
3
), pp.
1334
1345
.
12.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
, 1955, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
0002-7863,
77
, pp.
3701
3706
.
13.
Hartmann
,
B.
,
Lee
,
G. F.
, and
Lee
,
J. D.
, 1994, “
Loss Factor Height and Width Limits for Polymer Relaxations
,”
J. Acoust. Soc. Am.
0001-4966,
95
(
1
), pp.
226
233
.
14.
Havriliak
,
S.
, and
Negami
,
S.
, 1966, “
A Complex Plane Analysis of Alpha-Dispersions in Some Polymer Systems
,”
J. Polym. Sci., Part C: Polym. Symp.
0449-2994,
14
, pp.
99
117
.
15.
Yiu
,
Y. C.
, 1993, “
Finite Element Analysis of Structures With Classical Viscoelastic Materials
,”
Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, La Jolla, CA, April, pp.
2110
2119
.
16.
Yiu
,
Y. C.
, 1994, “
Substructure and Finite Element Formulation for Linear Viscoelastic Materials
,”
Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Hilton Head, SC, April, pp.
1585
1594
.
17.
Cremer
,
L.
,
Heckl
,
M.
, and
Ungar
,
E.
, 1990,
Structure-Borne Sound
,
2nd ed.
,
Springer
, New York.
18.
Allen
,
B. R.
, 1996, “
A Direct Complex Stiffness Test System for Viscoelastic Material Properties
,”
Proc. SPIE
0277-786X,
2720
, pp.
338
345
.
19.
Maly
,
J. R.
,
Bender
,
K. A.
, and
Pendleton
,
S. C.
, 2000, “
Complex Stiffness Measurement of Vibration-Damped Structural Elements
,”
Proceedings 18th IMAC
, San Antonio, TX, February.
20.
Lemerle
,
P.
, 2002, “
Measurement of the Viscoelastic Properties of Damping Materials: Adaptation of the Wave Propagation Method to Test Samples of Short Length
,”
J. Sound Vib.
0022-460X,
250
(
2
), pp.
181
196
.
21.
Espindola
,
J. J.
,
da Silva Neto
,
J. M.
, and
Lopes
,
E. M. O.
, 2005, “
A Generalized Fractional Derivative Approach to Viscoelastic Material Properties Measurement
,”
Appl. Math. Comput.
0096-3003,
164
, pp.
493
506
.
You do not currently have access to this content.