This paper discusses the effects of compression on acoustical performance of fibrous materials. A finite element model is used to predict the absorption coefficient and transmission loss of absorbing and barrier materials. This model is developed based on the Galerkin method and includes the equation of wave propagation in rigid frame porous material. The compression of fibrous material is entered to the model with relations that explain modifications of physical properties used in the wave equation. Acoustical behavior of absorption and barrier materials with and without compression is studied. It is shown that compression of the material leads to reduction of the transmission loss of the barrier materials and absorption coefficient of absorbing materials. In this regard, “thickness reduction” and “variations of physical parameters” due to compression are investigated.

1.
Allard
,
J. F.
, 1993,
Propagation of Sound in Porous Media, Modeling of Sound Absorbing Materials
,
Elsevier
,
New York
.
2.
Lai
,
H. Y.
,
Bolton
,
J. S.
, and
Alexander
,
J. H.
, 1997, “
Layered Fibrous Treatments for a Sound Absorption and Sound Transmission
,”
Trans. of SAE
,
106
(
6
), Part 2, pp.
3311
3318
.
3.
Powell
,
R. E.
, and
Zhu
,
J.
, 1997, “
SEA Modeling and Testing for Airborne Transmission Through Vehicle Sound Package
,”
Trans. of SAE
,
106
(
6
), Part 2, pp.
2912
2922
.
4.
Seybert
,
A. F.
, and
Seman
,
R. A.
, 1998, “
Boundary Element Prediction of Sound Propagation in Ducts Containing Bulk Absorbing Materials
,”
Trans. ASME
0097-6822,
120
, pp.
976
981
.
5.
Hamdi
,
M. A.
,
Mebarak
,
L.
,
Omrani
,
A.
, and
Atalla
,
N.
, 2001, “
An Efficient Finite Element Formulation for the Analysis of Acoustic and Elastic Waves Propagation in Sound Packages
,”
Trans. of SAE
,
110
(
6
), 2001-01-1406,
1481
1488
.
6.
Atalla
,
N.
, and
Hamdi
,
M. A.
, 2001, “
Enhanced Weak Integral Formulation for the Mixed (u,p) Poroelastic Equations
,”
J. Acoust. Soc. Am.
0001-4966,
109
(
6
), pp.
3065
3068
.
7.
Bermudez
,
A.
,
Ferrin
,
J. L.
, and
Prietoa
,
A.
, 2004, “
Solving New Poroelastic Models by Finite Element Method
,”
Proceedings Acustica 2004
,
Guimaraes, Portugal
, September 14–17, paper ID: 0125.
8.
Fellah
,
Z. E. A.
,
Berger
,
S.
,
Lauriks
,
W.
,
Depollier
,
C.
,
Aristegui
,
C.
, and
Chapelon
,
J. Y.
, 2003, “
Measuring the Porosity and the Tortuosity of Porous Materials via Reflected Waves at Oblique Incidence
,”
J. Acoust. Soc. Am.
0001-4966,
113
(
5
), pp.
2424
2433
.
9.
Atalla
,
N.
, and
Panneton
,
R.
, 2001, “
Acoustic Absorption of Macro-Perforated Porous Materials
,”
J. Sound Vib.
0022-460X,
243
(
4
), pp.
659
678
.
10.
Bermudez
,
A.
,
Ferrin
,
J. L.
, and
Prietoa
,
A.
, 2004, “
A Finite Element Solution of Acoustic Propagation in Rigid Porous Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
10
), pp.
1295
1314
.
11.
Castagnede
,
B.
,
Aknine
,
A.
,
Brouard
,
B.
, and
Tarnow
,
V.
, 2000, “
Effects of Compression on the Sound Absorption of Fibrous Materials
,”
Appl. Acoust.
0003-682X,
61
, pp.
173
182
.
12.
Dazel
,
O.
,
Sgard
,
F.
, and
Atalla
,
N.
, 2002, “
An Extension of Complex Modes for the Resolution of Finite-Element Poroelastic Problems
,”
J. Sound Vib.
0022-460X,
253
(
2
), pp.
421
445
.
You do not currently have access to this content.