A novel approach to determine very accurately multiple parameter variations by exploiting the geometric shape of dynamic attractors in state space is presented. The approach is based on the analysis of sensitivity vector fields. These sensitivity vector fields describe changes in the state space attractor of the dynamics and system behavior when parameter variations occur. Distributed throughout the attractor in state space, these fields form a collection of snapshots for known parameter changes. Proper orthogonal decomposition of the parameter space is then employed to distinguish multiple simultaneous parametric variations. The parametric changes are reconstructed by analyzing the deformation of attractors which are characterized by means of the sensitivity vector fields. A set of basis functions in the vector space formed by the sensitivity fields is obtained and is used to successfully identify test cases involving multiple simultaneous parametric variations. The method presented is shown to be robust over a wide range of parameter variations and to perform well in the presence of noise. One of the main applications of the proposed technique is detecting multiple simultaneous damage in vibration-based structural health monitoring.

1.
Farrar
,
C. R.
,
Doebling
,
S. W.
, and
Nix
,
D. A.
, 2001, “
Vibration-Based Structural Damage Identification
,”
Proc. R. Soc. London, Ser. A
1364-5021,
359
(
1778
), pp.
131
149
.
2.
Landa
,
P. S.
, and
Rosenblum
,
M. G.
, 1991, “
Time-Series Analysis for System-Identification and Diagnostics
,”
Physica D
0167-2789,
48
(
1
), pp.
232
254
.
3.
Pandey
,
A. K.
, and
Biswas
,
M.
, 1994, “
Damage Detection in Structures Using Changes in Flexibility
,”
J. Sound Vib.
0022-460X,
169
(
1
), pp.
3
17
.
4.
Agbabian
,
M. S.
,
Masri
,
S. F.
,
Miller
,
R. F.
, and
Caughey
,
T. K.
, 1990, “
System Identification Approach to Detection of Structural Changes
,”
J. Eng. Mech.
0733-9399,
117
(
2
), pp.
370
390
.
5.
Feeny
,
B. F.
,
Yuan
,
C. M.
, and
Cusumano
,
J. P.
, 2001, “
Parametric Identification of an Experimental Magneto-elastic Oscillator
,”
J. Sound Vib.
0022-460X,
247
(
5
), pp.
785
806
.
6.
Ljung
,
L.
, 1999,
System Identification—Theory for the User
,
Prentice Hall
,
New York
.
7.
Masri
,
S. F.
,
Miller
,
R. K.
,
Saud
,
A. F.
, and
Caughey
,
T. K.
, 1987, “
Identification of Nonlinear Vibrating Structures: Part I: Formulation
,”
ASME J. Appl. Mech.
0021-8936,
109
(
54
), pp.
918
922
.
8.
Smyth
,
A. W.
,
Masri
,
S. F.
,
Chassiakos
,
A. G.
, and
Caughey
,
T. K.
, 1999, “
On-line Parametric Identification of MDOF Nonlinear Hysteretic Systems
,”
J. Eng. Mech.
0733-9399,
125
(
2
), pp.
133
142
.
9.
Atalla
,
M. J.
, and
Inman
,
D. J.
, 1998, “
On Model Updating Using Neural Networks
,”
Mech. Syst. Signal Process.
0888-3270,
12
(
1
), pp.
135
161
.
10.
Marwala
,
T.
, and
Hunt
,
H. E. M.
, 1999, “
Fault Identification Using Finite Element Models and Neural Networks
,”
Mech. Syst. Signal Process.
0888-3270,
13
(
3
), pp.
475
490
.
11.
Zang
,
C.
, and
Imregun
,
M.
, 2001, “
Structural Damage Detection Using Artificial Neural Networks and Measured FRF Data Reduced via Principal Component Projection
,”
J. Sound Vib.
0022-460X,
242
(
5
), pp.
813
827
.
12.
Nichols
,
J. M.
,
Todd
,
M. D.
,
Seaver
,
M.
, and
Virgin
,
L. N.
, 2003, “
Use of Chaotic Excitation and Attractor Property Analysis in Structural Health Monitoring
,”
Phys. Rev. E
1063-651X,
67
,
016209
016216
.
13.
Zimmerman
,
D. C.
, 2000, “
Model Validation and Verification of Large and Complex Space Structures
,”
Inverse Probl. Eng.
1068-2767,
8
(
2
), pp.
93
118
.
14.
Zimmerman
,
D. C.
, 1999, “
Looking Into the Crystal Ball: The Continued Need for Multiple Viewpoints in Damage Detection
,”
Key Eng. Mater.
1013-9826,
167–168
(
1
), pp.
76
90
.
15.
Roemer
,
M. J.
,
Kacprzynski
,
G. J.
,
Schoeller
,
M.
,
Howe
,
R.
, and
Friend
,
R.
, 2001, “
Advanced Test Cell Diagnostics for Gas Turbine Engines (USAF Automated Jet Engine Test Strategy—AJETS
),”
Proceedings of IGTI 2001 Turbo Expo
,
ASME
,
New York
, Vol.
1
, pp.
1
10
.
16.
Kacprzynski
,
G. J.
,
Roemer
,
M. J.
,
Hess
,
A. J.
, and
Bladen
,
K. R.
, 2001, “
Extending FMECA—Health Management Design Optimization for Aerospace Applications
,”
Proceedings of IEEE Aerospace Conference
,
IEEE
,
New York
, Vol.
1
, pp.
1
8
.
17.
Kacprzynski
,
G. J.
,
Gumina
,
M.
,
Roemer
,
M. J.
,
Cagulat
,
D. E.
,
Galie
,
T. R.
, and
McGroarty
,
J. J.
, 2001, “
A Prognostic Modeling Approach for Predicting Recurring Maintenance for Shipboard Propulsion Systems
,”
Proceedings of IGTI 2001 Turbo Expo
,
ASME
,
New York
, Vol.
1
, pp.
1
7
.
18.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
, 1996, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review
,” Report LA-13070-MS,
Los Alamos National Laboratories
, Los Alamos, NM.
19.
Cusumano
,
J. P.
,
Chelidze
,
D.
, and
Hecht
,
N. K.
, 1997, “
Using Phase Space Reconstruction to Track Parameter Drift in Nonlinear Systems
,”
Proceedings of the ASME Design Engineering Technical Conference
,
ASME
,
New York
, Vol.
CD, DETC-VIB-4012
, pp.
1
10
.
20.
Cusumano
,
J. P.
, and
Chatterjee
,
A.
, 2000, “
Steps Towards a Qualitative Dynamics of Damage Evolution
,”
Int. J. Solids Struct.
0020-7683,
37
(
44
), pp.
6397
6417
.
21.
Chelidze
,
D.
,
Cusumano
,
J. P.
, and
Chatterjee
,
A.
, 2002, “
A Dynamical Systems Approach to Damage Evolution Tracking, Part Description and Experimental Application
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
250
257
.
22.
Cusumano
,
J. P.
,
Chelidze
,
D.
, and
Chatterjee
,
A.
, 2002, “
A Dynamical Systems Approach to Damage Evolution Tracking, Part 2: Model-Based Validation and Physical Interpretation
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
258
264
.
23.
Chatterjee
,
A.
,
Cusumano
,
J. P.
, and
Chelidze
,
D.
, 2002, “
Optimal Tracking of Parameter Drift in a Chaotic System: Experiment and Theory
,”
J. Sound Vib.
0022-460X,
250
(
5
), pp.
877
901
.
24.
Chancellor
,
R. S.
,
Alexander
,
R. M.
, and
Noah
,
S. T.
, 1996, “
Detecting Parameter Changes Using Experimental Nonlinear Dynamics and Chaos
,”
ASME J. Vibr. Acoust.
0739-3717,
118
(
3
), pp.
375
383
.
25.
Pecora
,
L. M.
, and
Caroll
,
T. L.
, 1996, “
Discontinuous and Nondifferentiable Functions and Dimension Increase Induced by Filtering Chaotic Data
,”
Chaos
1054-1500,
6
(
3
), pp.
432
439
.
26.
Trickey
,
S. T.
,
Todd
,
M.
,
Seaver
,
M.
, and
Nichols
,
J.
, 2002, “
Geometric Time Domain Methods of Vibration Based Damage Detection
,”
Proceedings of the SPIE 9th Smart Structures and Materials Conference
, Vol.
1
, pp.
1
9
.
27.
Wang
,
W. J.
,
Wu
,
Z. T.
, and
Chen
,
J.
, 2001, “
Fault Identification in Rotating Machinery Using the Correlation Dimension and Bispectra
,”
Nonlinear Dyn.
0924-090X,
25
(
4
), pp.
383
393
.
28.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
University Press
,
Cambridge, MA
.
29.
Dowell
,
E. H.
, 1966, “
Nonlinear Oscillations of a Fluttering Plate
,”
AIAA J.
0001-1452,
4
(
7
), pp.
1267
1275
.
30.
Epureanu
,
B. I.
,
Tang
,
L. S.
, and
Paidoussis
,
M. P.
, 2004, “
Exploiting Chaotic Dynamics for Detecting Parametric Variations in Aeroelastic Systems
,”
AIAA J.
0001-1452,
42
(
4
), pp.
728
735
.
31.
Cusumano
,
J. P.
, and
Kimble
,
B. W.
, 1995, “
A Stochastic Interrogation Method for Experimental Measurements of Global Dynamics and Basin Evolution—Application to a 2-well Oscillator
,”
Nonlinear Dyn.
0924-090X,
8
(
2
), pp.
213
235
.
32.
Epureanu
,
B. I.
, and
Dowell
,
E. H.
, 1998, “
On the Optimality of the OGY Control Scheme
,”
Physica D
0167-2789,
116
(
1–2
), pp.
1
7
.
33.
Epureanu
,
B. I.
, and
Dowell
,
E. H.
, 2000, “
Optimal Multi-dimensional OGY Controller for Stabilizing Fully Unstable Limit Cycles
,”
Physica D
0167-2789,
139
(
1–2
), pp.
87
96
.
34.
Epureanu
,
B. I.
, and
Dowell
,
E. H.
, 1997, “
System Identification for Ott-Grebogi-Yorke Controller Design
,”
Phys. Rev. E
1063-651X,
56
(
5
), pp.
5327
5331
.
35.
Hashmi
,
A.
, and
Epureanu
,
B. I.
, 2005, “
Quantifying Attractor Morphing for High-sensitivity Detection of Parameter Variations by Point Cloud Averaging
,”
Proceedings of ASME IDETC International Design Engineering Technical Conferences
, submitted.
You do not currently have access to this content.