An extension of the Karhunen-Loève decomposition (KLD) specifically aimed at the evaluation of the natural modes of n-dimensional structures (n=1,2,3) having nonhomogeneous density is presented. The KLD (also known as proper orthogonal decomposition) is a numerical method to obtain an “optimal” basis, capable of extracting from a data ensemble the maximum energy content. The extension under consideration consists of modifying the Hilbert space that embeds the formulation so as to have an inner product with a weight equal to the density. This yields a modified Karhunen-Loève integral operator, whose kernel is represented by the time-averaged autocorrelation tensor of the ensemble of data multiplied by the density function. The basis functions are obtained as the eigenfunctions of this operator; the corresponding eigenvalues represent the Hilbert-space-norm energy associated with each eigenfunction in the phenomenon analyzed. It is shown under what conditions the eigenfunctions, obtained using the proposed extension of the KLD, coincide with the natural modes of vibration of the structure (linear normal modes). An efficient numerical procedure for the implementation of the method is also presented.

1.
Hotelling
,
H.
, 1933, “
Analysis of a Complex of Statistical Variables Into Principal Components
,”
J. Educ. Psychol.
0022-0663,
24
, pp.
417
441
;
Hotelling
,
H.
, 1933, “
Analysis of a Complex of Statistical Variables into Principal Components
,”
J. Educ. Psychol.
0022-0663,
24
,
498
520
.
2.
Kosambi
,
D.
, 1943, “
Statistics in Function Space
,”
J. Indian Math. Soc., New Ser.
0019-5839,
7
, pp.
76
88
.
3.
Loève
,
M.
, 1945, “
Fonctions aléatoire de second ordre
,” Compte Rend. Acad. Sci. (Paris),
220
.
4.
Karhunen
,
K.
, 1946, “
Zur Spektraltheorie stokastisher Prozesse
,”
Ann. Acad. Sci. Fenn., Ser. A
0365-673X,
34
, pp.
1
7
.
5.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996, “
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
, Cambridge.
6.
Lumley
,
J. L.
, 1967, “
The Structure of Inhomogeneous Turbulence
,” in
Atmospheric Turbulence and Wave Propagation
,
A. M.
Yaglom
, and
V. I.
Tatarsky
, eds.,
Nauka
, Moscow, pp.
166
178
.
7.
Lumley
,
J. L.
, 1970, “
Stochastic Tools in Turbulence
,
Academic Press
, New York.
8.
Feeny
,
B. F.
, and
Kappagantu
,
R.
, 1998, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
0022-460X,
211
, pp.
607
616
.
9.
Kerschen
,
G.
, and
Golinval
,
J. C.
, 2002, “
Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition
,”
J. Sound Vib.
0022-460X,
249
, pp.
849
865
.
10.
Wolter
,
C.
,
Trinidade
,
M. A.
, and
Sampaio
,
R.
, 2002, “
Obtaining Mode Shapes Through the Karhunen-Loève Expansion for Distributed-Parameter Linear Systems
,”
Shock Vib.
1070-9622
9
, pp.
177
192
.
11.
Iemma
,
U.
,
Morino
,
L.
, and
Diez
,
M.
, 2006, “
Digital Holography and Karhunen-Loève Decomposition for the Modal Analysis of Vibrating Structures
,”
J. Sound Vib.
0022-460X,
291
, pp.
107
131
.
12.
Feeny
,
B. F.
, 2002, “
On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
157
160
.
13.
Iemma
,
U.
,
Diez
,
M.
, and
Morino
,
L.
, 2004, “
Experimental Modal Identification of Structures: The Karhunen-Loève Decomposition Revisited
,” Eleventh International Congress on Sound and Vibration, ICSV11, St. Petersburg.
14.
Kress
,
R.
, 1989,
Linear Integral Equations
,
Springer-Verlag
, New York.
15.
Sokolnikov
,
I. S.
, and
Redheffer
,
R. M.
, 1966,
Mathematics of Physics and Modern Engineering
,
2nd ed.
,
McGraw Hill
, New York.
16.
Hochstadt
,
H.
, 1973,
Integral Equations
,
Wiley Classics Library, John Wiley & Sons
, New York.
17.
Han
,
S.
, and
Feeny
,
B. F.
, 2002, “
Enhanced Proper Orthogonal Decomposition for the Modal Analysis of Homogeneous Structures
,”
J. Vib. Control
1077-5463
8
, pp.
19
40
.
You do not currently have access to this content.