This paper studies the dynamics of a self-sustained electromechanical transducer. The stability of fixed points in the linear response is examined. Their local bifurcations are investigated and different types of bifurcation likely to occur are found. Conditions for the occurrence of Hopf bifurcations are derived. Harmonic oscillatory solutions are obtained in both nonresonant and resonant cases. Their stability is analyzed in the resonant case. Various bifurcation diagrams associated to the largest one-dimensional (1-D) numerical Lyapunov exponent are obtained, and it is found that chaos can appear suddenly, through period doubling, period adding, or torus breakdown. The extreme sensitivity of the electromechanical system to both initial conditions and tiny variations of the coupling coefficients is also outlined. The experimental study of̱the electromechanical system is carried out. An appropriate electronic circuit (analog simulator) is proposed for the investigation of the dynamical behavior of the electromechanical system. Correspondences are established between the coefficients of the electromechanical system model and the components of the electronic circuit. Harmonic oscillatory solutions and phase portraits are obtained experimentally. One of the most important contributions of this work is to provide a set of reliable analytical expressions (formulas) describing the electromechanical system behavior. These formulas are of great importance for design engineers as they can be used to predict the states of the electromechanical systems and respectively to avoid their destruction. The reliability of the analytical formulas is demonstrated by the very good agreement with the results obtained by both the numeric and the experimental analysis.

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
John Wiley and Sons
,
New York
.
2.
Chakraborty
,
T.
, and
Rand
,
R. H.
, 1988, “
The Transition From Phase Locking to Drift in a System of Two Weakly Coupled van der Pol Oscillator
,”
Int. J. Non-Linear Mech.
0020-7462,
28
, pp.
369
376
.
3.
Kapitaniak
,
T.
, and
Steeb
,
W. H.
, 1991, “
Transition to Hyperchaos in Coupled Generalized van der Pol Equations
,”
Phys. Lett. A
0375-9601,
152
, pp.
33
36
.
4.
Polianshenko
,
M.
, and
Mckay
,
S. R.
, 1992, “
Chaos Due to Homoclinic and Heteroclinic Orbits in Two Coupled Oscillators With Nonisochronism
,”
Phys. Rev. A
1050-2947,
46
, pp.
5271
5274
.
5.
Pastor-Diàz
,
I.
, and
López-Fraguas
,
A.
, 1995, “
Dynamics of Two Coupled van der Pol Oscillators
,”
Phys. Rev. E
1063-651X,
52
, pp.
1480
1489
.
6.
Kozowski
,
J.
,
Parlitz
,
U.
, and
Lauterborn
,
W.
, 1995, “
Bifurcation Analysis of Two Coupled Periodically Driven Duffing Oscillators
,”
Phys. Rev. E
1063-651X,
51
, pp.
1861
1867
.
7.
Woafo
,
P.
,
Chedjou
,
J. C.
, and
Fotsin
,
H. B.
, 1996, “
Dynamics of a System Consisting of a van der Pol Oscillator Coupled to a Duffing Oscillator
,”
Phys. Rev. E
1063-651X,
54
, pp.
5929
5934
.
8.
Woafo
,
P.
,
Fotsin
,
H. B.
, and
Chedjou
,
J. C.
, 1996, “
Dynamics of Two Nonlinearly Coupled Oscillators
,”
Phys. Scr.
0031-8949,
57
, pp.
195
200
.
9.
Chedjou
,
J. C.
,
Fotsin
,
H. B.
,
Woafo
,
P.
, and
Domngang
,
S.
, 2001, “
Analog Simulation of the Dynamics of a van der Pol Oscillator Coupled to a Duffing Oscillator
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
48
, pp.
748
757
.
10.
Chedjou
,
J. C.
,
Woafo
,
P.
, and
Domngang
,
S.
, 2001, “
Shilnikov Chaos and Dynamics of a Self-Sustained Electromechanical Transducer
,”
ASME J. Vibr. Acoust.
0739-3717,
123
, pp.
170
174
.
11.
Chedjou
,
J. C.
, 2004, “
On the Analysis of Nonlinear Electromechanical Systems With Applications
,” Ph.D. dissertation, University of Hannover, Germany.
12.
Criminale
,
W. O.
,
Jackson
,
T. L.
, and
Nelson
,
P. W.
, 2004, “
Limit Cycle-Strange Attractor Competition
,”
Blackwell Publishing
,
Malden, MA
, pp.
133
160
.
13.
Kozlov
,
A. K.
,
Sushchik
,
M. M.
,
Molkov
,
Ya. I.
, and
Kuznetsov
,
A. S.
, 1999, “
Bistable Phase Synchronization and Chaos in a System of Coupled van der Pol-Duffing Oscillators
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
9
, pp.
2271
2277
.
14.
Han
,
Y.-J.
, 2000, “
Dynamics of Coupled Nonlinear Oscillators of Different Attractors; van der Pol Oscillator and Damped Duffing Oscillator
,”
J. Korean Phys. Soc.
0374-4884,
37
, pp.
3
9
.
15.
Guckenheimer
,
J.
, and
Holmes
,
P. J.
, 1996,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer-Verlag
,
Berlin
.
16.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1994,
Applied Nonlinear Dynamics
,
John Wiley and Sons
,
New York
.
17.
Asfar
,
K. R.
, 1989, “
Quenching of Self-excited Vibrations
,”
ASME J. Vibr. Acoust.
0739-3717,
111
, pp.
130
133
.
18.
Vandergraft
,
J. S.
, 1978,
Introduction to Numerical Computations
,
Academic
,
New York
.
19.
Zhou
,
T.
,
Moss
,
F.
, and
Bulsara
,
A.
, 1992, “
Observation of a Strange Nonchaotic Attreactor in a Multistable Potential
,”
Phys. Rev. A
1050-2947,
45
, p.
5394
.
20.
King
,
G. P.
, and
Gaito
,
S. T.
, 1992, “
Bistable Chaos-I: Unfolding the Cups
,”
Phys. Rev. A
1050-2947,
46
, pp.
3092
3099
.
21.
Hamill
,
D. C.
, 1993, “
Learning About Chaotic Circuits With Spice
,”
IEEE Trans. Educ.
0018-9359,
36
, pp.
28
35
.
22.
Azzouz
,
A.
,
Duhr
,
R.
, and
Hasler
,
M.
, 1983, “
Transition to Chaos in a Simple Nonlinear Circuit Driven by Sinusoidal Voltage Source
,”
IEEE Trans. Circuits Syst.
0098-4094,
30
, pp.
923
914
.
23.
Parker
,
T. S.
, and
Chua
,
L. O.
, 1987, “
Chaos: A Tutorial for Engineers
,”
Proc. IEEE
0018-9219,
75
, pp.
982
1008
.
24.
Sheingold
,
D. H.
, 1996,
Nonlinear Circuits Handbook
,
Analog Devices
,
Norwood, MA
.
25.
Johnson
,
C. I.
, 1963,
Analog Computer Techniques
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.