The goal of this paper is to study the steady-state dynamic response of an oscillator involving a hysteretic component and exposed to harmonic excitation. This is accomplished by using the Preisach formalism in the description of the contribution of the hysteretic component. Two cases are considered. In the first one, the hysteretic component is modeled using a series of “Jenkin’s elements,” while in the second one the same component is modeled by a zero-memory plus a purely hysteretic term. The steady-state amplitude of the response is determined analytically by using the equivalent linearization technique which involves input-output relationships for the equivalent linear system, the stiffness and damping coefficients of which are response-amplitude dependent. The derived results are compared with pertinent numerical data obtained by integrating the nonlinear equation of motion of the oscillator. The analytical and the numerical results are found in excellent agreement and supplement the findings of certain previous studies.

1.
Brokate
,
M.
, and
Sprekels
,
J.
, 1996,
Hysteresis and Phase Transitions
,
Springer
,
New York
.
2.
Krasnoselskii
,
M. A.
, and
Pokrovskii
,
A. V.
, 1983,
Systems With Hysteresis
,
Springer-Verlag
,
New York
.
3.
Caughey
,
T. K.
, 1960, “
Sinusoidal Excitation of a System With Bilinear Hysteresis
,”
ASME J. Appl. Mech.
0021-8936,
27
, pp.
640
643
.
4.
Visintin
,
A.
, 1994,
Differential Models of Hysteresis
,
Springer
,
New York
.
5.
Bouc
,
R.
, 1967, “
Forced Vibrations of a Mechanical System With Hysteresis
,”
Proceedings of the 4th Conference on Nonlinear Oscillations
, Prague.
6.
Mayergoyz
,
I.
, 2003,
Mathematical Models of Hysteresis and Their Applications
,
Elsevier
,
Amsterdam
.
7.
Visintin
,
A.
, 2002, “
On Hysteresis in Elasto-Plasticity and in Ferromagnetism
,”
Int. J. Non-Linear Mech.
0020-7462,
37
(
8
), pp.
1283
1298
.
8.
Lubarda
,
V. A.
,
Sumarac
,
D.
, and
Krajcinovic
,
D.
, 1993, “
Preisach Model and Hysteretic Behaviour of Ductile Materials
,”
Eur. J. Mech. A/Solids
0997-7538,
12
(
4
), pp.
445
470
.
9.
Sumarac
,
D.
, and
Stosic
,
S.
, 1996, “
Preisach Model for the Cyclic Bending of Elasto-Plastic Beams
,”
Eur. J. Mech. A/Solids
0997-7538,
15
(
1
), pp.
155
172
.
10.
Ortin
,
J.
, 1991, “
Preisach Modeling of Hysteresis for a Pseudoelastic Cu–Zn–Al Single Crystal
,”
J. Appl. Phys.
0021-8979,
71
(
3
), pp.
1454
1461
.
11.
Hughes
,
D.
, and
Wen
,
J. T.
, 1997, “
Preisach Modeling of Piezoceramic and Shape Memory Alloy Hysteresis
,”
Smart Mater. Struct.
0964-1726,
6
, pp.
287
300
.
12.
Gorbet
,
R. B.
,
Wang
,
D. W. L.
, and
Morris
,
K. A.
, 1998, “
Preisach Model Identification of a Two-Wire SMA Actuator
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation
, Part 3 (of 4), May 16–20, Leuven, Belgium, pp.
2161
2167
.
13.
Khan
,
M. M.
, 2002, “
Modeling of Shape Memory Alloy (SMA) Spring Elements for Passive Vibration Isolation Using Simplified SMA Model and Preisach Model
,” Master of Science, Texas A&M University.
14.
Ktena
,
A.
,
Fotiadis
,
D. I.
,
Spanos
,
P. D.
,
Berger
,
A.
, and
Massalas
,
C. V.
, 2002, “
Identification of 1D and 2D Preisach Models for Ferromagnets and Shape Memory Alloys
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
2235
2247
.
15.
Ktena
,
A.
,
Fotiadis
,
D. I.
,
Spanos
,
P. D.
, and
Massalas
,
C. V.
, 2001, “
A Preisach Model Identification Procedure and Simulation of Hysteresis in Ferromagnets and Shape-Memory Alloys
,”
Physica B
0921-4526,
306
, pp.
84
90
.
16.
Wong
,
C. W.
,
Ni
,
Y. Q.
, and
Lau
,
S. L.
, 1994, “
Steady-State Oscillation of Hysteretic Differential Model. I: Response Analysis
,”
J. Eng. Mech.
0733-9399,
120
(
11
), pp.
2271
2298
.
17.
Wong
,
C. W.
,
Ni
,
Y. Q.
, and
Ko
,
J. M.
, 1994, “
Steady-State Oscillation of Hysteretic Differential Model. II: Performance Analysis
,”
J. Eng. Mech.
0733-9399,
120
(
11
), pp.
2299
2324
.
18.
Krejci
,
P.
, 2000, “
Forced Oscillations in Preisach Systems
,”
Physica B
0921-4526,
275
(
1–3
), pp.
81
86
.
19.
Spanos
,
P. T.-D.
,
, 1976, “
Linearization Techniques for Nonlinear Dynamical Systems
,” Report EERL 76-4,
California Institute of Technology
.
20.
Iwan
,
W. D.
, 1966, “
A Distributed-Element Model for Hysteresis and its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
1
8
.
21.
Preisach
,
F.
, 1935, “
Über die Magnetische Nachwirkung
,”
Z. Phys.
0044-3328,
94
, pp.
227
302
.
22.
Doong
,
T.
, and
Mayergoyz
,
I.
, 1985, “
On Numerical Implementation of Hysteresis Models
,”
IEEE Trans. Magn.
0018-9464,
Mag-21
(
5
), pp.
1853
1855
.
23.
Barker
,
J. A.
,
Schreiber
,
D. E.
,
Huth
,
B. G.
, and
Everett
,
D. H.
, 1983, “
Magnetic Hysteresis and Minor Loops: Models and Experiments
,”
Proc. R. Soc. London, Ser. A
1364-5021,
386
(
1791
), pp.
251
261
.
24.
Spanos
,
P. D.
,
Cacciola
,
P.
, and
Muscolino
,
G.
, 2004, “
Stochastic Averaging of Preisach Hysteretic Systems
,”
J. Eng. Mech.
0733-9399,
130
(
11
), pp.
1257
1267
.
25.
Spanos
,
P. D.
,
Cacciola
,
P.
, and
Redhorse
,
J.
, 2004, “
Random Vibration of SMA Systems via Preisach Formalism
,”
Nonlinear Dyn.
0924-090X,
36
(
2–4
), pp.
405
419
.
You do not currently have access to this content.