It has been stated that a uniform rotating shaft in the Rayleigh beam model has only a finite number of critical speeds and precession modes. This paper presents a controller design of optimal sensor/actuator location and feedback gain for steady state unbalance response of a rotating shaft operating in a speed range. For systems under order-limit constraint such that only part of the precession modes can be included in the reduced-order controller design, the system stability can be evaluated. The example of a hinged-hinged rotating shaft is employed to illustrate the controller design of velocity feedback in collocated and noncollocated senor/actuator configuration. Analyses show that the reduced-order controller not only guarantees the closed loop system stability but also effectively suppress the unbalance response.

1.
Schulz
,
G.
, and
Heimbold
,
G.
, 1983, “
Dislocated Actuator/Sensor Positioning and Feedback Design in Flexible Structures
,”
J. Guid. Control Dyn.
0731-5090,
6
(
5
), pp.
361
367
.
2.
Yang
,
B.
, and
Mote
,
C. D.
, 1991, “
Frequency-Domain Vibration Control of Distributed Gyroscopic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
18
25
.
3.
Yang
,
S. M.
, and
Liu
,
Y. C.
, 1995, “
Frequency Domain Control of Flexible Beams With Piezoelectric Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
117
, pp.
541
546
.
4.
Yang
,
S. M.
, and
Jeng
,
C. A.
, 1998, “
Structural Control of Distributed Parameter System by Output Feedback
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
3
), pp.
322
327
.
5.
Kasarda
,
M. E. F.
,
Allaire
,
P. E.
,
Humphris
,
R. R.
, and
Barrett
,
L. E.
, 1990, “
A Magnetic Damper for First Mode Vibration Reduction in Multimass Flexible Rotors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
112
, pp.
463
469
.
6.
Palazzolo
,
A. B.
,
Lin
,
R. R.
,
Kascak
,
A. F.
, and
Alexander
,
R. M.
, 1989, “
Active Control of Transient Rotordynamic Vibration by Optimal Control Methods
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
111
, pp.
264
270
.
7.
Fan
,
G. W.
,
Nelson
,
H. D.
,
Crouch
,
P. E.
, and
Mignolet
,
M. P.
, 1993, “
LQR-Based Least-Squares Output Feedback Control of Rotor Vibrations Using the Complex Mode and Balanced Realization Methods
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
115
, pp.
314
323
.
8.
Yang
,
S. M.
,
Sheu
,
G. J.
, and
Yang
,
C. D.
, 1997, “
Vibration Control of Rotor Systems with Noncollocated Sensor/Actuator by Experimental Design
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
420
427
.
9.
Sheu
,
G. J.
,
Yang
,
S. M.
, and
Yang
,
C. D.
, 1997, “
Design of Experiments for the Controller of Rotor Systems with a Magnetic Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
200
207
.
10.
Song
,
O.
,
Jeong
,
N. H.
, and
Librescu
,
L.
, 2001, “
Implications of Conservative and Gyroscopic Forces on Vibration and Stability of Elastically Tailored Rotating Shaft Modeled as Composite Thin-Walled Beam
,”
J. Acoust. Soc. Am.
0001-4966,
109
(
3
), pp.
972
981
.
11.
Song
,
O.
,
Librescu
,
L.
, and
Jeong
,
N. H.
, 2002, “
Vibration and Stability Control of Smart Composite Rotating Shaft via Structural Tailoring and Piezoelectric Strain Actuation
,”
J. Sound Vib.
0022-460X,
257
(
3
), pp.
503
525
.
12.
Lee
,
C. W.
,
Vibration Analysis of Rotors
,
Kluwer Academic
, 1993, Chaps. 6 and 7.
13.
Tan
,
C. A.
, and
Huang
,
B.
, 1998, “
Wave Reflection and Transmission in an Axially Strained Rotating Timoshenko Shaft
,”
J. Sound Vib.
0022-460X,
213
(
3
), pp.
483
510
.
14.
Yang
,
S. M.
, and
Sheu
,
G. J.
, 1999, “
Vibration Control of a Rotating Shaft—An Analytical Solution
,”
ASME J. Appl. Mech.
0021-8936,
66
(
1
), pp.
254
259
.
15.
Yang
,
S. M.
, 1993, “
Stability Criteria of Structural Control Systems With Noncollocated Velocity Feedback
,”
AIAA J.
0001-1452,
31
(
7
), pp.
1351
1353
.
You do not currently have access to this content.