One-way clutches and clutch bearings are being used in a wide variety of dynamic systems. Motivated by their recent use as ratchets in piezoelectric actuators and decoupling devices in serpentine belt drives, a method of analysis of systems containing one-way clutches is presented. Two simple systems are analyzed. The goal of the first is the power transmission which would be of concern in an actuator. The goal of the second is decoupling large inertia elements to reduce loads in an oscillating system, the objective of the clutch in a serpentine belt drive. Results show how system parameters can be tuned to meet the desired performance of these piece-wise linear systems.

1.
Frank
,
J. E.
,
Mockensturm
,
E. M.
,
Koopmann
,
G. H.
,
Lesieutre
,
G. A.
,
Chen
,
W. C.
, and
Loverich
,
J. Y.
, 2003, “
Modeling and design optimization of a bimorph-driven rotary motor
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
, pp.
217
227
.
2.
Llibre
,
J.
, and
Ponce
,
E.
, 2003, “
Piecewise Linear Feedback Systems with Arbitrary Number of Limit Cycles
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
13
(
4
), pp.
895
904
.
3.
Xia
,
X.
, 2002, “
Well Posedness of Piecewise-Linear Systems with Multiple Modes and Multiple Criteria
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
10
), pp.
1716
1720
.
4.
Nakai
,
M.
,
Murata
,
S.
, and
Hagio
,
S.
, 2002, “
Analysis of Piecewise Linear Systems with Boundaries in Displacement and Time
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
4
), pp.
527
536
.
5.
Freire
,
E.
,
Ponce
,
E.
,
Rodrigo
,
F.
,
Torres
, and
F.
, 2002, “
Bifurcation Sets of Symmetrical Continuous Piecewise Linear Systems with Three Zones
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
12
(
8
), pp.
1675
1702
.
6.
Xu
,
L.
,
Lu
,
M.
, and
Cao
,
Q.
, 2002, “
Nonlinear Vibrations of Dynamical Systems with a General Form of Piecewise-Linear Viscous Damping by Incremental Harmonic Balance Method
,”
Phys. Lett. A
0375-9601,
301
(
1-2
), pp.
65
73
.
7.
Ueta
,
T.
,
Chen
,
G.
, and
Kawabe
,
T.
, 2001, “
A Simple Approach to Calculation and Control of Unstable Periodic Orbits in Chaotic Piecewise-Linear Systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
11
(
1
), pp.
215
224
.
8.
Theodossiades
,
S.
, and
Natsiavas
,
S.
, 2000, “
Non-Linear Dynamics of Gear-Pair Systems with Periodic Stiffness and Backlash
,”
J. Sound Vib.
0022-460X,
229
(
2
), pp.
287
310
.
9.
Raghothama
,
A.
, and
Narayanan
,
S.
, 1999, “
Bifurcation and Chaos in Geared Rotor Bearing System by Incremental Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
226
(
3
), pp.
469
492
.
10.
Natsiavas
,
S.
,
Theodossiades
,
S.
, and
Goudas
,
I.
, 2000, “
Dynamic Analysis of Piecewise Linear Oscillators with Time Periodic Coefficients
,”
Int. J. Non-Linear Mech.
0020-7462,
35
(
1
), pp.
53
68
.
11.
Freire
,
E.
,
Ponce
,
E.
, and
Ros
,
J.
, 1999, “
Limit Cycle Bifurcation from Center in Symmetric Piecewise-Linear Systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
9
(
5
), pp.
895
907
.
12.
Freire
,
E.
,
Ponce
,
E.
,
Rodrigo
,
F.
, and
Torres
,
F.
, 1998, “
Bifurcation Sets of Continuous Piecewise Linear Systems with Two Zones
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
8
(
11
), pp.
2073
2097
.
13.
Kahraman
,
A.
, and
Blankenship
,
G.
, 1997, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator with Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
0021-8936,
64
(
1
), pp.
217
226
.
14.
Kahraman
,
A.
, and
Blankenship
,
G.
1996, “
Interactions Between Commensurate Parametric and Forcing Excitations in a System with Clearance
,”
J. Sound Vib.
0022-460X,
194
(
3
), pp.
317
336
.
15.
Chen
,
S.
, and
Shaw
,
S.
, 1996, “
Normal Modes for Piecewise Linear Vibratory Systems
,”
Nonlinear Dyn.
0924-090X,
10
(
2
), pp.
135
164
.
16.
Rook
,
T.
, and
Singh
,
R.
, 1995, “
Dynamic Analysis of a Reverse-Idler Gear Pair with Concurrent Clearances
,”
J. Sound Vib.
0022-460X,
182
(
2
), pp.
303
322
.
17.
Chakrabarty
,
K.
, and
Banerjee
,
S.
, 1995, “
Control of Chaos in Piecewise-Linear Systems with Switching Nonlinearity
,”
Phys. Lett. A
0375-9601,
200
(
2
), pp.
115
120
.
18.
Pratap
,
R.
,
Mukherjee
,
S.
, and
Moon
,
F.
, 1994, “
Dynamic Behavior of a Bilinear Hysteretic Elastoplastic Oscillator,. 1. Free Oscillations
,”
J. Sound Vib.
0022-460X,
172
(
3
), pp.
321
337
.
19.
Lau
,
S.
, and
Zhang
,
W.
, 1992, “
Nonlinear Vibrations of Piecewise-Linear Systems by Incremental Harmonic-Balance Method
,”
ASME J. Appl. Mech.
0021-8936,
59
(
1
), pp.
153
160
.
20.
Wong
,
C.
,
Zhang
,
W.
, and
Lau
,
S.
, 1991, “
Periodic Forced Vibration of Unsymmetrical Piece-wise-Linear Systems by Incremental Harmonic-Balance Method
,”
J. Sound Vib.
0022-460X,
149
(
1
), pp.
91
105
.
21.
Mahfouz
,
I.
, and
Badrakhan
,
F.
, 1990, “
Chaotic Behavior of Some Piecewise-Linear Systems. 1. Systems with Set-up Spring or with Unsymmetric Elasticity
,”
J. Sound Vib.
0022-460X,
143
(
2
), pp.
255
288
.
22.
Mahfouz
,
I.
, and
Badrakhan
,
F.
, 1990, “
Chaotic Behavior of Some Piecewise-Linear Systems, 2. Systems with Clearance
,”
J. Sound Vib.
0022-460X,
143
(
2
), pp.
289
328
.
23.
Choi
,
Y.
, and
Noah
,
S.
, 1988, “
Forced Periodic Vibration of Unsymmetric Piecewise-Linear Systems
,”
J. Sound Vib.
0022-460X,
121
(
1
), pp.
117
126
.
24.
Johnson
,
K.
, 1985,
Contact Mechanics
,
Cambridge University Press
, New York.
25.
Mockensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
, 1996, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
346
351
.
You do not currently have access to this content.