Numerical models to simulate interface behavior of friction connections under cyclic loading are investigated. The question of validity of lower-order models in successfully capturing response of friction joints under cyclic loading is addressed. Single-element macroslip models are not capable of capturing localized interface behavior prior to gross interfacial slip. This paper focuses on the convergence behavior of a multipoint contact microslip model comprised of Iwan-type elements for different physical parameters such as system response amplitude and kinematic state of the friction joint. System dynamics play a significant role in determining the convergence of structural behavior, especially for tuned damper sets in the nonzero damper mass case. This behavior is explored using simple linearized models that explain the response sensitivity in terms of the overall modal density near the forcing frequency. Convergence of the interface response kinematics is also considered, with a focus on the number of damping elements operating in the stick, stick-slip, and slip regimes at steady state. Energy dissipation scaling under light forcing is also examined, with the class of models considered here yielding scaling exponents consistent with experimental observations and analytical predictions from the literature. We show that the interface kinematic behavior converges at a slower rate than the structural response and therefore requires a higher-order interface model. These results suggest that extremely low-order models (i.e., <5 damping elements) provide predictions that are model order dependent, while higher-order models (i.e., >50 damping elements) are not. This result impacts model development and calibration approaches, as well as providing clues for appropriate model reduction strategies.

1.
Mindlin
,
R. D.
, 1949, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
0021-8936,
16
, pp.
259
268
.
2.
Cattaneo
,
C.
, 1938, “
Sul Contatto di Due Corpi Elastici: Distribuzione Locale Degli Sforz
,”
Reconditi Acad. Naz. Lincei
,
27
, pp.
342
348
;
Cattaneo
,
C.
, 1938, “
Sul Contatto di Due Corpi Elastici: Distribuzione Locale Degli Sforz
,”
Reconditi Acad. Naz. Lincei
,
27
,
434
436
;
Cattaneo
,
C.
, 1938, “
Sul Contatto di Due Corpi Elastici: Distribuzione Locale Degli Sforz
,”
Reconditi Acad. Naz. Lincei
,
27
,
474
478
.
3.
Mindlin
,
R. D.
, and
Dereciewicz
,
H.
, 1953, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
0021-8936,
20
, pp.
327
344
.
4.
Johnson
,
K. L.
, 1961, “
Energy Dissipation at Spherical Surfaces in Contact Transmitting Oscillating Forces
,”
J. Mech. Eng. Sci.
0022-2542,
3
(
4
), pp.
362
368
.
5.
Goodman
,
L. E.
, 1962, “
Contact Stress Analysis of Normally Loaded Rough Spheres
,”
ASME J. Appl. Mech.
0021-8936,
29
, pp.
515
522
.
6.
Hutchinson
,
J. W.
, and
Jensen
,
H. M.
, 1990, “
Models of Fiber Debonding and Pullout in Brittle Composites With Friction
,”
Mech. Mater.
0167-6636,
9
(
2
), pp.
139
163
.
7.
Cox
,
B. N.
,
Sridhar
,
N.
, and
Beyerlein
,
I. J.
, 2001, “
Inertial Effects in the Pullout Mechanisms During Dynamic Loading of a Bridged Crack
,”
Acta Mater.
1359-6454,
49
, pp.
3863
3877
.
8.
Berger
,
E. J.
,
Begley
,
M. R.
, and
Mahajani
,
M.
, 2000, “
Structural Dynamic Effects on Interface Response: Formulation and Simulation Under Partial Slipping Conditions
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
785
792
.
9.
Quinn
,
D. D.
, and
Segalman
,
D. J.
, 2002, “
Using Series-Series Iwan-Type Models for Understanding Joint Dynamics
,” Sand2002-4120j, Sandia National Laboratories.
10.
Sextro
,
W.
, 1999, “
Forced Vibration of Elastic Structures With Friction Contacts
.”
Proc. of ASME Design Engineering Technical Conf.
,
ASME
, New York, ASME Paper No. DETC/VIB-8180.
11.
McDevitt
,
T. W.
, and
Laursen
,
T. A.
, 2000, “
A Mortar-Finite Element Formulation for Frictional Contact Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
(
10
), pp.
1525
1547
.
12.
Hartog
,
J. P. D.
, 1931, “
Forced Vibrations With Combined Coulomb and Viscous Damping
,”
ASME J. Appl. Mech.
0021-8936,
53
(
9
), pp.
107
115
.
13.
Masing
,
G.
, 1923–1924, “
Zur Heynschen Theorie der Verfestigung der Metalle Durch Verborgene Elastische Spannungen
,” (in German),
Wiss. Veroffent. Siemens Konzern
,
3
, pp.
135
141
.
14.
Iwan
,
W. D.
, 1967, “
On a Class of Models for the Yielding Behavior of Continuous and Composite Systems
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
612
617
.
15.
Griffin
,
J. H.
, 1980, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
329
333
.
16.
Menq
,
C.-H.
,
Bielak
,
J.
, and
Griffin
,
J. H.
, 1986, “
The Influence of Microslip on Vibratory Response, Part I: A New Microslip Model
,”
J. Sound Vib.
0022-460X,
107
(
2
), pp.
279
293
.
17.
Menq
,
C.-H.
,
Griffin
,
J. H.
, and
Bielak
,
J.
, 1986, “
The Influence of Microslip on Vibratory Response, Part II: A Comparison With Experimental Results
,”
J. Sound Vib.
0022-460X,
107
(
2
), pp.
295
307
.
18.
Ferri
,
A. A.
, and
Heck
,
B. S.
, 1995, “
Vibration Analysis of Dry Friction Damped Turbine Blades Using Singular Perturbation Theory
,”
Proc. of ASME International Mechanical Engineering Congress and Exposition
,
ASME
, New York, AMD-Vol.
192
, pp.
47
56
.
19.
Ricciardelli
,
F.
, and
Vickery
,
B. J.
, 1999, “
Tuned Vibration Absorbers With Dry Friction Damping
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
28
, pp.
707
723
.
20.
Berger
,
E. J.
, and
Krousgrill
,
C. M.
, 2002, “
On Friction Damping Modeling Using Bilinear Hysteresis Elements
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
367
375
.
21.
Hartung
,
A.
,
Schmieg
,
H.
, and
Vielsack
,
P.
, 2001, “
Passive Vibration Absorber With Dry Friction
,”
Arch. Appl. Mech.
0939-1533,
71
, pp.
463
472
.
22.
Quinn
,
D.
, 2001, “
Distributed Friction and Microslip in Mechanical Joints With Varying Degrees-of-Freedom
,”
Proc. of ASME Design Engineering Technical Conf.
,
ASME
, New York, ASME Paper No. DETC/VIB-21514.
23.
Berger
,
E. J.
, 2002, “
Friction Modeling for Dynamic System Simulation
,”
Appl. Mech. Rev.
0003-6900,
55
(
6
), pp.
535
577
.
24.
Gaul
,
L.
, and
Nitsche
,
R.
, 2001, “
The Role of Friction in Mechanical Joints
,”
Appl. Mech. Rev.
0003-6900,
54
(
2
), pp.
93
105
.
25.
Ferri
,
A. A.
, 1994, “
Friction Damping and Isolation Systems
,”
J. Mech. Des.
1050-0472,
117
, pp.
196
206
.
26.
Mackin
,
T. J.
,
Inglis
,
H.
, and
Berger
,
E.
, 2003, “
Dynamic Friction in Pullout Experiments
,” (in preparation).
27.
Smallwood
,
D. O.
,
Gregory
,
D. L.
, and
Coleman
,
R. G.
, 2000, “
Damping Investigations of a Simplified Frictional Shear Joint
,” Sand2000-1929c, Sandia National Laboratories.
28.
Iwan
,
W. D.
, 1966, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
893
900
.
29.
Lobitz
,
D. W.
,
Gregory
,
D. L.
, and
Smallwood
,
D. O.
, 2000, “
Comparison of Finite Element Predictions to Measurements From the Sandia Microslip Experiment
,” Sand2000-2799c, Sandia National Laboratories.
You do not currently have access to this content.