The high-frequency asymptotics of the acoustic noise spectrum is considered for the case of spherically symmetric waves propagating in an unbounded inviscid liquid. Using the Kirkwood and Bethe hypothesis regarding kinetic enthalpy, the Euler equations, the equation of state in the Tait’s form and following linearization allow the kinetic enthalpy and “reduced” pressure to be obtained. The Fourier transform yields the spectral density of acoustic energy which proves to be inversely proportional to the square frequency and decreases approximately by 6 decibels per octave with increase of a frequency.
Issue Section:
Technical Papers
1.
Medwin, H., and Clay, C. S., 1998, Fundamentals of Acoustical Oceanography, Academic Press.
2.
Updegraff
, G. E.
, and Anderson
, V. C.
, 1991
, “Bubble Noise and Wavelet Spills Recorded 1 m Below the Ocean Surface
,” J. Acoust. Soc. Am.
, 86
, pp. 2264
–2279
.3.
Longuet-Higgins
, M. S.
, 1990
, “Bubble Noise Spectra
,” J. Acoust. Soc. Am.
, 87
, pp. 652
–661
.4.
Pumphrey
, H. C.
, and Crum
, L. A.
, 1990
, “Bubble Noise Spectra
,” J. Acoust. Soc. Am.
, 87
, pp. 142
–148
.5.
Prosperetti
, A.
, and Oguz
, H. M.
, 1993
, “The Impact of Drops on Liquid Surface and the Underwater Noise of Rain
,” Ann. Rev. Fluid Mech
, 25
, pp. 577
–602
.6.
Urick, R. J., 1983, Principles of Underwater Sound, 3rd edition, McGraw-Hill Book Company.
7.
Vogel
, A.
, Bush
, S.
, and Parlitz
, U.
, 1996
, “Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water
,” J. Acoust. Soc. Am.
, 100
(1
), 148
–165
.8.
Rice
, M. H.
, and Walsh
, H. M.
, 1957
, “Equation of State of Water to 250 Kilobars
,” J. Chem. Phys.
, 26
, pp. 824
–830
.9.
Gilmore, R. F., 1952, “The Growth and Collapse of a Spherical Bubble in a Viscous Compressible Fluid,” Calif. Inst. Tech. Rep., 26-4.
10.
Cole, R. H., 1948, Underwater Explosions, Princeton U.P., Princeton, NJ.
11.
Temkin
, S.
, 1999
, “Radial Pulsation of a Fluid Sphere in a Sound Wave
,” J. Fluid Mech.
, 380
, pp. 1
–38
.12.
Kamke, E., 1959, Differentialgleichungen, Lo¨sungsmethoden und Lo¨sungen, Vol. 1, Akad. Ver., Leipzig.
13.
Gradstein, I. S., and Ryzhik, I. M., 1965, Tables of Integrals, Series and Products, Academic Press, New York.
Copyright © 2003
by ASME
You do not currently have access to this content.