A new time domain method is presented to identify moving loads on a bridge deck based on the measured responses. The bridge deck is modeled as an orthotropic plate and the loads are modeled as a group of four loads moving on top of the bridge deck at fixed distance apart. Dynamic behavior of the bridge deck is analyzed by the orthotropic plate theory and mode superposition technique. Like all inverse problems, this identification is an ill-conditioned problem, and a regularization technique is employed to stabilize the computations. The identified loads moving at different eccentricities are presented. Laboratory work on the force identification is also presented. The effect of incomplete measured modes in the responses is discussed, and an underestimation in the loads may result if the number of vibration mode for identification is larger than that in the responses. Computational simulations and laboratory tests show that the method is effective and practical for identification of individual wheel loads on bridge decks.

1.
Yen
,
C.-S.
, and
Wu
,
E.
,
1995
, “
On the Inverse Problem of Rectangular Plates Subjected to Elastic Impact, Part I: Method Development and Numerical Verification
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
692
698
.
2.
Yen
,
C.-S.
, and
Wu
,
E.
,
1995
, “
On the Inverse Problem of Rectangular Plates Subjected to Elastic Impact, Part II: Experimental Verification and Further Application
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
699
705
.
3.
Choi
,
K. Y.
, and
Chang
,
F.-K.
,
1996
, “
Identification of Impact Force and Location Using Distributed Sensors
,”
AIAA J.
,
34
(
1
), pp.
136
142
.
4.
Moller
,
P. W.
,
1999
, “
Load Identification Through Structural Modification
,”
ASME J. Appl. Mech.
,
66
(
1
), pp.
236
241
.
5.
Rao
,
Z.-S.
,
Shi
,
Q.-Z.
, and
Hagiwara
,
I.
,
1999
, “
Optimal Estimation of Dynamic Loads for Multiple-Input System
,”
ASME J. Vibr. Acoust.
,
121
(
3
), pp.
397
401
.
6.
Lee
,
H.
, and
Park
,
Y. S.
,
1995
, “
Error Analysis of Indirect Force Determination and A Regularization Method to Reduce Force Determination Error
,”
Mech. Syst. Signal Process.
,
9
(
6
), pp.
615
633
.
7.
Busby
,
H. R.
, and
Trujillo
,
D. M.
,
1987
, “
Solution of An Inverse Dynamics Problem Using an Eigenvalue Reduction Technique
,”
Comput. Struct.
,
25
(
1
), pp.
107
117
.
8.
Busby
,
H. R.
, and
Trujillo
,
D. M.
,
1997
, “
Optimal Regularization of Inverse Dynamics Problem.
Comput. Struct.
,
63
(
2
), pp.
243
248
.
9.
Hansen
,
P. C.
,
1992
, “
Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
,”
SIAM Rev.
,
34
(
4
), pp.
561
580
.
10.
Golub
,
G. H.
,
Heath
,
M.
, and
Wahaba
,
G.
,
1979
, “
Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter
,”
Technometrics
,
21
(
2
), pp.
215
223
.
11.
Kammer
,
D. C.
,
1998
, “
Input Force Reconstruction Using A Time Domain Technique
,”
ASME J. Vibr. Acoust.
,
120
(
4
), pp.
868
874
.
12.
O’Connor
,
C.
, and
Chan
,
T. H. T.
,
1988
, “
Dynamic Wheel Loads from Bridge Strains
,”
J. Struct. Div. ASCE
,
114
(
8
), pp.
1703
1723
.
13.
Chan
,
T. H. T.
, and
Yung
,
T. H.
,
2000
, “
A Theoretical Study of Force Identification Using Prestressed Concrete Bridge
,”
Eng. Struct.
,
23
(
12
), pp.
1529
1537
.
14.
Chan
,
T. H. T.
,
Law
,
S. S.
,
Yung
,
T. H.
, and
Yuan
,
X. R.
,
1999
, “
An Interpretive Method for Moving Force Identification
,”
J. Sound Vib.
,
219
(
3
), pp.
503
524
.
15.
Law
,
S. S.
,
Chan
,
T. H. T.
, and
Zeng
,
Q. H.
,
1997
, “
Moving Force Identification: A Time Domain Method
,”
J. Sound Vib.
,
201
(
1
), pp.
1
22
.
16.
Chan
,
T. H. T.
,
Law
,
S. S.
, and
Yung
,
T. H.
,
2000
, “
Moving Force Identification Using Existing Prestressed Concrete Bridge
,”
Eng. Struct.
,
22
(
10
), pp.
1261
1270
.
17.
Law
,
S. S.
,
Chan
,
T. H. T.
, and
Zeng
,
Q. H.
,
1999
, “
Moving Force Identification: A Frequency and Time Domain Analysis
,”
ASME J. Dyn. Syst., Meas., Control
,
121
(
3
), pp.
394
401
.
18.
Zhu
,
X. Q.
, and
Law
,
S. S.
,
1999
, “
Moving Forces Identification on A Multi-Span Continuous Bridge
,”
J. Sound Vib.
,
228
(
2
), pp.
377
396
.
19.
Zhu
,
X. Q.
, and
Law
,
S. S.
,
2000
, “
Identification of Vehicle Axle Loads from Bridge Responses
,”
J. Sound Vib.
,
236
(
4
), pp.
705
724
.
20.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
1983
, “
Investigation of a Technique for the Differentiation of Empirical Data
,”
ASME J. Dyn. Syst., Meas., Control
,
105
(
3
), pp.
200
202
.
21.
Law
,
S. S.
, and
Zhu
,
X. Q.
,
2000
, “
Study on Different Beam Models in Moving Force Identification
,”
J. Sound Vib.
,
234
(
4
), pp.
661
679
.
22.
Santantamarina, J. C., and Fratta, D., 1998, Introduction to Discrete Signals and Inverse Problems in Civil Engineering, ASCE Press.
23.
Fafard, M., and Mallikarjuna, Savard M., 1993, “Dynamics of Bridge-Vehicle Interaction,” Structural Dynamics, Proc. EURODYN’93, pp. 951–960.
24.
Bakht, B., and Jaeger, L. G., 1985, Bridge Analysis Simplified, McGraw-Hill.
25.
The American Association of State Highway and Transportation Officials, 1996, Standard Specifications for Highway Bridges, Washington, D. C., U.S.A.
You do not currently have access to this content.