Analytical studies of vortex-induced vibration (VIV) of cables during lock-in have considered small amplitude and relatively fast dynamic responses about an equilibrium configuration. However, this equilibrium may change as a result of the significantly increased mean drag created during lock-in. In response to increased drag, the cable may slowly drift downstream causing appreciable changes in cable geometry and tension. The resonance conditions for lock-in may be preserved during this slow drift or they may be disrupted. A nonlinear cable/fluid model is discussed that captures both fast (small amplitude) motions due to VIV and slow (large amplitude) motions due to drift.
Issue Section:
Technical Papers
1.
Sarpkaya
, T.
, 1979
, “Vortex-Induced Oscillations: A Selective Review
,” ASME J. Appl. Mech.
, 46
, pp. 241
–258
.2.
Griffin
, O. M.
, Vandiver
, J. K.
, Skop
, R. A.
, and Meggitt
, D. J.
, 1982
, “The Strumming Vibrations of Marine Cables
,” Ocean Science and Engineering
, 7
, pp. 461
–498
.3.
Pantazopoulos, M. S., 1994, “Vortex-Induced Vibration Parameters: Critical Review,” Proc. Int. Conf. on Offshore Mechanics and Arctic Engineering, Houston, TX, 1, pp. 199–255.
4.
Currie
, I. G.
, and Turnbull
, D. H.
, 1987
, “Streamwise Oscillations of Cylinders Near the Critical Reynolds Number
,” J. Fluids Struct.
, 1
, pp. 185
–196
.5.
Bishop
, R. E. D.
, and Hassan
, A. Y.
, 1964
, “The Lift and Drag Forces on a Circular Cylinder Oscillating in a Flowing Fluid
,” Proc. R. Soc. London, Ser. A
, A277
, pp. 51
–75
.6.
Perkins
, N. C.
, 1992
, “Modal Interactions in the Non-Linear Response of Elastic Cables under Parametric/External Excitation
,” Int. J. Non-Linear Mech.
, 27
, pp. 233
–250
.7.
Newberry
, B. L.
, and Perkins
, N. C.
, 1997
, “Investigation of Resonant Tensioning in Submerged Cables Subjected to Lateral Excitation
,” Int. J. Offshore Polar Eng.
, 7
, pp. 48
–53
.8.
Cheng
, S. P.
, and Perkins
, N. C.
, 1992
, “Closed-Form Vibration Analysis of Sagged Cable/Mass Suspensions
,” ASME J. Appl. Mech.
, 59
, pp. 923
–928
.9.
Skop
, R. A.
, and Balasubramanian
, S.
, 1997
, “A New Twist on an Old Model for Vortex-Excited Vibrations
,” J. Fluids Struct.
, 11
, pp. 395
–412
.10.
Griffin
, O. M.
, Pattison
, J. H.
, Skop
, R. A.
, Ramberg
, S. E.
, and Meggitt
, D. J.
, 1980
, “Vortex-Excited Vibrations of Marine Cables
,” ASCE J. the Waterway, Port, Coastal and Ocean Division
, 106
, pp. 183
–204
.11.
Vandiver, J. K., 1983, “Drag Coefficients of Long Flexible Cylinders,” Proc. Offshore Technology Conference, Houston, TX, OTC 4490, pp. 405–410.
12.
Behbahani-Nejad
, M.
, and Perkins
, N. C.
, 1996
, “Freely Propagating Waves in Elastic Cables
,” J. Sound Vib.
, 196
, pp. 189
–202
.13.
Sparks
, C. P.
, 1984
, “The Influence of Tension, Pressure and Weight on Pipe and Riser Deformations and Stresses
,” ASME J. Energy Resour. Technol.
, 106
, pp. 46
–54
.14.
Triantafyllou, M. S., and Bliek, A., 1983, “The Dynamics of Inclined Taut and Slack Marine Cables,” Proc. Fifteenth Annual Offshore Technology Conference, 1, pp. 469–476.
15.
Irvine
, H. M.
, and Caughey
, T. K.
, 1974
, “The Linear Theory of Free Vibrations of a Suspended Cable
,” Proc. R. Soc. London, Ser. A
, A341
, pp. 299
–315
.16.
Sumer, B. M., and Fredsoe, J., 1999, Hydrodynamics around Cylindrical Structures, World Scientific Publishing Co., NJ.
17.
Chakrabarti, S. K., 1987, Hydrodynamics of Offshore Structures, Computational Mechanics Publications.
18.
Hartlen
, R. T.
, and Currie
, I. G.
, 1970
, “Lift-Oscillator Model of Vortex-Induced Vibration
,” J. Eng. Mech. Div.
, 96
, pp. 577
–591
.19.
Bokaian
, A.
, 1994
, “Lock-in Prediction of Marine Risers and Tethers
,” J. Sound Vib.
, 175
, pp. 607
–623
.20.
Ramberg
, S. E.
, and Griffin
, O. M.
, 1974
, “Vortex Formation in the Wake of a Vibrating, Flexible Cable
,” ASME J. Fluids Eng.
, 96
, pp. 317
–322
.21.
Ramberg
, S. E.
, and Griffin
, O. M.
, 1976
, “Velocity Correlation and Vortex Spacing in the Wake of a Vibrating Cable
,” ASME J. Fluids Eng.
, 98
, pp. 10
–18
.22.
Kim, W.-J., and Perkins, N. C., 2000, “Nonlinear Two Dimensional Vortex Induced Vibration of an Elastic Cable,” Proc. ETCE/OMAE 2000 Joint Conference, New Orleans, LA, OMAE00-8010.
23.
Patrikalakis
, N. M.
, and Chryssostomidis
, C.
, 1985
, “Vortex-Induced Response of a Flexible Cylinder in a Constant Current
,” ASME J. Energy Resour. Technol.
, 107
, pp. 244
–249
.24.
Tuah
, H.
, and Leonard
, J. W.
, 1992
, “Strumming of Nonlinear Cable Elements Using Modal Superposition
,” Eng. Struct.
, 15
, pp. 282
–290
.25.
Meirovitch, L., 1967, Analytical Methods in Vibrations, Macmillan Publishing Co., Inc., NY.
26.
Irvine, H. M., 1981, Cable Structures, MIT Press, Cambridge, MA.
27.
Kim, WanJun, 2001, “Coupled Cross-flow and In-line Vortex-Induced Vibration of Elastic Cable Systems,” Ph.D. Dissertation, University of Michigan.
Copyright © 2003
by ASME
You do not currently have access to this content.