It is known that, when the mechanical coupling between the substructures is weak, small imperfections in a periodic structure can induce vibration localization. This phenomenon could lead to large vibration in certain regions of the structure and could be very harmful to the system. In this study, it is shown that the proposed coupled piezoelectric circuits can greatly relieve or even eliminate such localization problems. Part of the structural vibration energy will be transferred into electrical energy through the piezoelectric materials, and the newly created electro-mechanical wave/energy channel will sustain the energy propagation throughout the structure. The effectiveness and robustness of the coupled piezoelectric circuits on reducing vibration localization is demonstrated through analysis. Design guidelines are also established via approximation techniques and parametric studies.

1.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.
2.
Mester
,
S. S.
, and
Benaroya
,
H.
,
1995
, “
Periodic and Near-Periodic Structures
,”
Shock and Vibration
,
2
(
1
), pp.
69
95
.
3.
Pierre
,
C.
,
Castanier
,
M. P.
, and
Chen
,
W. J.
,
1996
, “
Wave Localization in Multi-coupled Periodic Structures: Application to Truss Beams
,”
Appl. Mech. Rev.
,
49
(
2
), pp.
65
86
.
4.
Slater
,
J. C.
,
Minkiewicz
,
G. R.
, and
Blair
,
A. J.
,
1999
, “
Forced Response of Bladed Disk Assemblies—A Survey
,”
Shock Vib. Dig.
,
31
(
1
), pp.
17
24
.
5.
Pierre
,
C.
, and
Dowell
,
E. H.
,
1987
, “
Localization of Vibrations by Structural Irregularity
,”
J. Sound Vib.
,
114
, pp.
549
564
.
6.
Cornwell
,
P. J.
, and
Bendiksen
,
O. O.
,
1989
, “
Localization of Vibrations in Large Space Reflectors
,”
AIAA J.
,
27
(
2
), pp.
219
226
.
7.
Pierre
,
C.
, and
Cha
,
P. D.
,
1989
, “
Strong Mode Localization in Nearly Periodic Disordered Structures
,”
AIAA J.
,
27
(
2
), pp.
227
241
.
8.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies with Cyclic Symmetry Part I: Free Vibrations
,”
ASME J. Vibr. Acoust.
,
110
, pp.
429
438
.
9.
Hodges
,
C. H.
, and
Woodhouse
,
J.
,
1983
, “
Vibration Isolation from Irregularity in a Nearly Periodic Structure: Theory and Measurements
,”
J. Acoust. Soc. Am.
,
74
(
3
), pp.
894
905
.
10.
Pierre
,
C.
,
1990
, “
Weak and Strong Vibration Localization in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.
11.
Cha
,
P. D.
, and
Pierre
,
C.
,
1991
, “
Vibration Localization by Disorder in Assemblies of Monocoupled, Multimode Component Systems
,”
ASME J. Appl. Mech.
,
58
(
4
), pp.
1072
1081
.
12.
Bouzit
,
D.
, and
Pierre
,
C.
,
1992
, “
Vibration Confinement Phenomena in Disordered, Mono-coupled, Multi-span Beams
,”
ASME J. Vibr. Acoust.
,
114
(
4
), pp.
521
530
.
13.
Hodges
,
C. H.
, and
Woodhouse
,
J.
,
1989
, “
Confinement of Vibration by One-dimensional Disorder, I: Theory of Ensemble Averaging
,”
J. Sound Vib.
,
130
(
2
), pp.
253
268
.
14.
Kissel
,
G. J.
,
1991
, “
Localization Factor for Multichannel Disordered Systems
,”
Phys. Rev. A
,
44
(
2
), pp.
1008
1014
.
15.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents from a Time Series
,”
Physica D
,
16
, pp.
285
317
.
16.
Castanier
,
M. P.
, and
Pierre
,
C.
,
1995
, “
Lyapunov Exponents and Localization Phenomena in Multi-coupled Nearly-periodic Systems
,”
J. Sound Vib.
,
183
(
3
), pp.
493
515
.
17.
Xie
,
W.-C.
, and
Ariaratnam
,
S. T.
,
1996a
, “
Vibration Mode Localization in Disordered Cyclic Structures, I: Single Substructure Mode
,”
J. Sound Vib.
,
189
(
5
), pp.
625
645
.
18.
Xie
,
W.-C.
, and
Ariaratnam
,
S. T.
,
1996b
, “
Vibration Mode Localization in Disordered Cyclic Structures, I: Multiple Substructure Mode
,”
J. Sound Vib.
,
189
(
5
), pp.
647
660
.
19.
Castanier, M. P., and Pierre, C., 1997, “Consideration on the Benefits of Intentional Blade Mistuning for the Forced Response of Turbomachinery Rotors,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Analysis and Design Issues for Modern Aerospace Vehicles, AD55, pp. 419–425.
20.
Agnes
,
G. S.
,
1999
, “
Piezoelectric Coupling of Bladed-disk Assemblies
,”
Proc. SPIE
,
3672
, pp.
94
103
.
21.
Cox, A. M., and Agnes, G. S., 1999, “A Statistical Analysis of Space Structure Mode Localization,” Proceedings of the 1999 AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, V4, pp. 3123–3133.
22.
Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, 1987, An American National Standard: IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, ANSI/IEEE Std 176-1987, New York.
23.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.
24.
Tsai
,
M. S.
, and
Wang
,
K. W.
,
1999
, “
On the Structural Damping Characteristics of Active Piezoelectric Actuators with Passive Shunt
,”
J. Sound Vib.
,
221
(
1
), pp.
1
22
.
25.
Tang
,
J.
, and
Wang
,
K. W.
,
1999
, “
Vibration Control of Rotationally Periodic Structures Using Passive Piezoelectric Shunt Networks and Active Compensation
,”
ASME J. Vibr. Acoust.
,
121
(
3
), pp.
379
390
.
26.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: I. Mono-coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.
27.
Tang
,
J.
, and
Wang
,
W. L.
,
1999
, “
On Calculation of Sensitivity for Non-Defective Eigenproblems with Repeated Roots
,”
J. Sound Vib.
,
225
(
4
), pp.
611
631
.
You do not currently have access to this content.