Contributed by the Technical Committee on Vibration and Sound for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received November 2001; Revised January 2002. Associate Editor: A. F. Vakakis.

Proper orthogonal decomposition (POD) is a useful experimental tool in dynamical systems, for example in dimensionality studies 1,2 and reduced order modeling 3,4,5,6. Application of POD in structural vibrations often involves sensed displacements, x1,x2,,xM, at M locations on the structure. These displacements are sampled N times at a fixed sampling rate to form displacement arrays xj=[xjt1,,xjtN]T,j=1,,M. The means are often subtracted. An N×M ensemble matrix X=[...

1.
Cusumano
,
J. P.
, and
Bai
,
B. Y.
,
1993
, “
Period-Infinity Periodic Motions, Chaos and Spatial Coherence in a 10 Degree of Freedom Impact Oscillator
,”
Chaos, Solitons Fractals
,
3
(
5
), pp.
515
535
.
2.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
539
575
.
3.
Fitzsimons, P., and Rui, C., 1993, “Determining Low-dimensional Models of Distributed Systems,” Advances in Robust Nonlinear Control Systems, ASME DSC Vol. 53, pp. 9–15.
4.
Ma
,
X.
,
Azeez
,
M. A. F.
, and
Vakakis
,
A. F.
,
2000
, “
Nonlinear Normal Modes and Nonparametric System Identification of Nonlinear Oscillators
,”
Mech. Syst. Signal Process.
,
14
(
1
), pp.
37
48
.
5.
Alaggio, R., and Rega, G., 2001, “Exploiting Results of Experimental Nonlinear Dynamics for Reduced-Order Modeling of a Suspended Cable,” ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, September 9–12, Pittsburgh, CD-ROM
6.
Kappagantu
,
R.
, and
Feeny
,
B. F.
,
1999
, “
An ‘Optimal’ Modal Reduction of a System with Frictional Excitation
,”
J. Sound Vib.
,
224
(
5
), pp.
863
877
.
7.
Davies, M. A., and Moon, F. C., 1997, “Solitons, Chaos and Modal Interactions in Periodic Structures,” Nonlinear Dynamics, The Richard Rand 50th Anniversary Volume, pp. 159–143, A. Guran, ed.
8.
Kust
,
O.
,
1997
, “
Modal Analysis of Long Torsional Strings Through Proper Orthogonal Decomposition
,”
Zeitschrift fuer angewandte Mathematik und Mechanik
,
77
(
S1
), pp.
S83–S84
S83–S84
.
9.
Feeny
,
B.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.
10.
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2001
, “
Physical Interpretation of Proper Orthogonal Modes Using Singular Value Decomposition
,”
J. Sound Vib.
,
249
(
5
), pp.
849
866
.
11.
Norris
,
M. A.
,
Kahn
,
S. P.
,
Silverberg
,
L. M.
, and
Hedgecock
,
C. E.
,
1993
, “
The Time Correlation Method for Modal Identification of Lightly Damped Structures
,”
J. Sound Vib.
,
162
(
1
), pp.
137
146
.
12.
Feeny
,
B. F.
,
2002
, “
On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems
,”
ASME J. Vibr. Acoust.
124
, pp.
157
160
.
13.
Han
,
S.
, and
Feeny
,
B. F.
,
2002
, “
Enhanced Proper Orthogonal Decomposition for the Modal Analysis of Homogeneous Structures
,”
J. Vib. Control
,
8
, pp.
19
40
.
14.
Inman, D. J., 1996, Engineering Vibration, Prentice Hall, Englewood Cliffs. New Jersey.
15.
Kappagantu
,
R. V.
, and
Feeny
,
B. F.
,
2000
, “
Part 1: Dynamical Characterization of a Frictionally Excited Beam
,”
Nonlinear Dyn.
,
22
(
4
), pp.
317
333
.
16.
Azeez
,
M. F. A.
, and
Vakakis
,
A. F.
,
2001
, “
Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillators
,”
J. Sound Vib.
,
245
(
5
), pp.
859
889
.
17.
Riaz, M. S., and Feeny, B. F., 1999, “Proper Orthogonal Decomposition of an Experimental Cantilever Beam,” Proceedings of the ASME Design Engineering Technical Conferences, Las Vegas, September 10–13, on CD-ROM.
You do not currently have access to this content.