This paper presents a method for designing and quantifying the performance of feedback stochastic controls for nonlinear systems. The design makes use of the method of stochastic averaging to reduce the dimension of the state space and to derive the Ito^ stochastic differential equation for the response amplitude process. The moment equation of the amplitude process closed by the Rayleigh approximation is used as a means to characterize the transient performance of the feedback control. The steady state and transient response of the amplitude process are used as the design criteria for choosing the feedback control gains. Numerical examples are studied to demonstrate the performance of the control.
Issue Section:
Technical Papers
1.
Brockett, R. W., and Liberzon, D., 1998, “On Explicit Steady-State Solutions of Fokker-Planck Equations for a Class of Nonlinear Feedback Systems,” Proceedings of American Control Conference, pp. 264–268.
2.
Wang, R., and Yasuda, K., 1999, “Exact Stationary Response Solutions of Nine Classes of Nonlinear Stochastic Systems Under Stochastic Parametric and External Excitations,” Proceedings of 1999 ASME Design Engineering Technical Conferences, pp. 1–15.
3.
Caughey
, T. K.
, and Ma
, F.
, 1982
, “Exact Steady-State Solution of a Class of Non-Linear Stochastic Systems
,” International Journal of Non-Linear Mechanics, Int. J. Non-Linear Mech.
, 17
, pp. 137
–142
.4.
Caughey
, T. K.
, and Ma
, F.
, 1982
, “Steady-State Response of a Class of Dynamical Systems to Stochastic Excitation
,” ASME J. Appl. Mech.
, 49
, pp. 629
–632
.5.
Wang
, R.
, and Yasuda
, K.
, 1997
, “Exact Stationary Probability Density for Second Order Non-Linear Systems Under External White Noise Excitation
,” J. Sound Vib.
205
, pp. 647
–655
.6.
Roberts
, J. B.
, and Spanos
, P. D.
, 1986
, “Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,” Int. J. Non-Linear Mech.
21
, pp. 111
–134
.7.
Lin, Y. K., 1967, Probabilistic Theory of Structural Dynamics, Robert E. Krieger Pub. Co, Malabar, Florida.
8.
Lin, Y. K., and Cai, G. Q., 1995, Probabilistic Structural Dynamics, Advanced Theory and Applications, McGraw-Hill, New York.
9.
Socha
, L.
, and Soong
, T. T.
, 1991
, “Linearization in Analysis of Nonlinear Stochastic Systems
,” Appl. Mech. Rev.
44
, pp. 399
–422
.10.
Socha
, L.
, 1994
, “Some Remarks on Exact Linearization of a Class of Stochastic Dynamical Systems
,” IEEE Trans. Autom. Control
, 39
, pp. 1980
–1984
.11.
Socha
, L.
, 1999
, “Statistical and Equivalent Linearization Techniques with Probability Density Criteria
,” Journal of Theoretical and Applied Mechanics
, 37
, pp. 369
–382
.12.
Socha
, L.
, 1999
, “Probability Density Equivalent Linearization and Non-Linearization Techniques
,” Arch. Mech.
, 51
, pp. 587
–507
.13.
Sun
, J. Q.
, and Hsu
, C. S.
, 1989
, “Cumulant-Neglect Closure Methods for Asymmetric Non-Linear Systems Driven by Gaussian White Noise
,” J. Sound Vib.
, 135
, pp. 338
–345
.14.
Florchinger
, P.
, 1997
, “Feedback Stabilization of Affine in the Control Stochastic Differential Systems by the Control Lyapunov Function Methods
,” SIAM J. Control Optim.
, 35
, pp. 500
–511
.15.
Bensoubaya
, M.
, Ferfera
, A.
, and Iggidr
, A.
, 2000
, “Jurdjevic-Quinn-type theorem for stochastic nonlinear control systems
,” IEEE Trans. Autom. Control
, 45
, pp. 93
–98
.16.
Boulanger
, C.
, 2000
, “Stabilization of a Class of Nonlinear Stochastic Systems
,” Nonlinear Analysis, Theory, Methods and Applications
, 41
, pp. 277
–286
.17.
Housner
, G. W.
, Bergman
, L. A.
, Caughey
, T. K.
, Chassiakos
, A. G.
, Claus
, R. O.
, Masri
, S. F.
, Skelton
, R. E.
, Soong
, T. T.
, Spencer
, B. F.
, and Yao
, J. T. P.
, 1997
, “Structural Control: Past, Present, and Future
,” J. Eng. Mech.
, 123
, pp. 897
–971
.18.
Crespo, L. G., and Sun, J. Q., 2001, “Control of Nonlinear Stochastic Systems via Stationary Probability Distributions,” Probab. Eng. Mech., In Press.
19.
Bratus
, A.
, Dimentberg
, M.
, Iourtchenko
, D.
, and Noori
, M.
, 2000
, “Hybrid Solution Method for Dynamic Programming Equations for MDOF Stochastic Systems
,” Dyn. Control
, 10
, pp. 107
–116
.20.
Khasminskii
, R. Z.
, 1966
, “A Limit Theorem for the Solutions of Differential Equations with Random Right-Hand Sides
,” Theor. Probab. Appl.
, 11
, pp. 390
–405
.21.
Zhu
, W. Q.
, Ying
, Z. G.
, and Song
, T. T.
, 2001
, “Optimal Nonlinear Feedback Control Strategy for Randomly Excited Structural Systems
,” Rev. Int. Hautes Temp. Refract.
, 24
, pp. 31
–51
.22.
Wu
, W. F.
, and Lin
, Y. K.
, 1984
, “Cumulant-Neglect Closure for Non-Linear Oscillators Under Parametric and External Excitations
,” Int. J. Non-Linear Mech.
, 9
, pp. 349
–362
.23.
Sun
, J. Q.
, and Xu
, Q.
, 1998
, “Response Variance Reduction of a Nonlinear Mechanical System via Sliding Mode Control
,” ASME J. Vibr. Acoust.
, 120
, pp. 801
–805
.24.
Sun
, J. Q.
, and Hsu
, C. S.
, 1987
, “Cumulant-Neglect Closure Methods for Nonlinear Systems Under Random Excitations
,” ASME J. Appl. Mech.
, 54
, pp. 649
–655
.25.
Sun
, J. Q.
, and Hsu
, C. S.
, 1989
, “Generalized Cell Mapping Method in Nonlinear Random Vibration Based Upon Short-Time Gaussian Approximation
,” ASME J. Appl. Mech.
, 57
, pp. 1018
–1025
.26.
Slotine, J. J., and Li, W., 1991, Applied Nonlinear Control, Prentice Hall, New York.
Copyright © 2002
by ASME
You do not currently have access to this content.