A free vibration analysis and an optimal design approach have been presented for thick isotropic rectangular plates with varying thickness under general edge conditions. First, the analysis is developed for vibrating rectangular plates by using the Mindlin plate theory and an eigenvalue problem is formulated by extending a method of Ritz to arbitrary sets of standard boundary conditions. The classical plate theory is also used to derive the frequency equation for comparison purpose. Secondly, a simplified optimal design approach is proposed to maximize the fundamental frequency of the plates. In applying this approach, the thickness variation is assumed to be linear in one direction and a taper ratio is chosen to be a design variable that represents the whole plate design. This approach significantly reduces the process for obtaining optimal or nearly optimal design under constraint of the constant plate volume. Numerical results are presented for various sets of boundary conditions, thickness ratio and two different plate theories, and their effects on the optimal taper ratio and its corresponding maximized fundamental frequency are discussed.

1.
Leissa, A. W., 1969, “Vibration of Plates,” NASA-160, U.S. Government Printing Office, Washington, D.C.
2.
Blevins, R. D., 1979, Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York.
3.
Gorman, D. J., 1982, Free Vibration Analysis of Rectangular Plates, Elsevier, New York.
4.
Sekiya, S., Hamada, M., and Sumi, S., 1988, Handbook for Strength and Design for Plate Structures (in Japanese), Asakura Publishing Co., Tokyo.
5.
Leissa
,
A. W.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
, pp.
257
293
.
6.
Singh
,
B.
, and
Saxena
,
V.
,
1996
, “
Transverse Vibration of a Rectangular Plate with Bidirectional Thickness Variation
,”
J. Sound Vib.
,
198
, pp.
51
65
.
7.
Bhat
,
R. B.
,
Laura
,
P. A. A.
,
Gurierrez
,
R. G.
,
Cortinez
,
V. H.
, and
Sanzi
,
H. C.
,
1990
, “
Numerical Experiments on the Determination of Natural Frequencies of Transverse Vibrations of Rectangular Plates of Non-uniform Thickness
,”
J. Sound Vib.
,
138
, pp.
205
219
.
8.
Kobayashi
,
H.
, and
Sonoda
,
K.
,
1991
, “
Vibration and Buckling of Tapered Rectangular Plates with Two Opposite Edges Simply Supported and the Other Two Edges Elastically Restrained against Rotation
,”
J. Sound Vib.
,
146
, pp.
323
337
.
9.
Kukreti
,
A. R.
,
Farsa
,
J.
, and
Bert
,
C. W.
,
1992
, “
Fundamental Frequency of Tapered Plates by Differential Quadrature
,”
J. Eng. Mech.
,
118
, pp.
121
1238
.
10.
Roy
,
P. K.
, and
Ganesan
,
N.
,
1995
, “
Studies on the Dynamic Behavior of a Square Plate with Variable Thickness
,”
J. Sound Vib.
,
182
, pp.
355
367
.
11.
Grossi
,
R. O.
, and
Bhat
,
R. B.
,
1995
, “
Natural Frequencies of Edge Restrained Tapered Rectangular Plates
,”
J. Sound Vib.
,
185
, pp.
335
343
.
12.
Sakiyama
,
T.
, and
Huang
,
M.
,
1998
, “
Free Vibration Analysis of Rectangular Plates with Variable Thickness
,”
J. Sound Vib.
,
216
, pp.
379
397
.
13.
Leissa
,
A. W.
,
1978
, “
Recent Research in Plate Vibrations. 1973–1976: Complicating Effects
,”
Shock Vib. Dig.
,
10
, pp.
21
34
.
14.
Aksu
,
G.
, and
Al-Kaabi
,
S. A.
,
1987
, “
Free Vibration Analysis of Mindlin Plates with Linearly Varying Thickness
,”
J. Sound Vib.
,
119
, pp.
189
205
.
15.
Al-Kaabi
,
S. A.
, and
Aksu
,
G.
,
1988
, “
Natural Frequencies of Mindlin Plates of Bilinearly Varying Thickness
,”
J. Sound Vib.
,
123
, pp.
373
379
.
16.
Rao
,
S. S.
,
1986
, “
Optimization of Structures under Shock and Vibration Environment
,”
Shock Vib. Dig.
,
18
, pp.
7
15
.
17.
Olhoff
,
N.
,
1974
, “
Optimal Design of Vibrating Rectangular Plates
,”
Int. J. Solids Struct.
,
10
, pp.
93
109
.
18.
Cheng
,
K. T.
, and
Olhoff
,
N.
,
1982
, “
Regularized Formulation for Optimal Design of Axisymmetric Plates
,”
Int. J. Solids Struct.
,
18
, pp.
153
169
.
19.
Narita
,
Y.
,
2000
, “
Combinations for the Free-Vibration Behaviors of Anisotropic Rectangular Plates under General Edge Conditions
,”
ASME J. Appl. Mech.
,
67
, pp.
568
573
.
20.
Narita
,
Y.
,
Ohta
,
Y.
,
Yamada
,
G.
, and
Kobayashi
,
Y.
,
1992
, “
Analytical Method for Vibration of Angle-ply Cylindrical Shells Having Arbitrary Edges
,”
Am. Inst. Aeronaut. Astronaut. J.
,
30
, pp.
790
796
.
21.
Narita, Y., 1995, “Chapter 2. Series and Ritz-type Buckling Analysis,” Buckling and Postbuckling of Composite Plates, Turvey, G. J., and Marshall, I. H., eds., Chapman & Hall, London, pp. 33–57.
22.
Narita
,
Y.
, and
Leissa
,
A. W.
,
1992
, “
Frequencies and Mode Shapes of Cantilevered Laminated Composite Plates
,”
J. Sound Vib.
,
154
, pp.
161
172
.
23.
Ilanko
,
S.
, and
Dickinson
,
S. M.
,
1999
, “
Asymptotic Modelling of Rigid Boundaries and Connections in the Rayleigh-Ritz Method
,”
J. Sound Vib.
,
219
, pp.
370
378
.
You do not currently have access to this content.