This paper presents a model reduction method and uncertainty modeling for the design of a low-order H robust controller for suppression of smart panel vibration. A smart panel with collocated piezoceramic actuators and sensors is modeled using solid, transition, and shell finite elements, and then the size of the model is reduced in the state space domain. A robust controller is designed not only to minimize the panel vibration excited by applied uniform acoustic pressure, but also to be reliable in real world applications. This paper introduces the idea of Modal Hankel Singular values (MHSV) to reduce the finite element model to a low-order state space model with minimum model reduction error. MHSV measures balanced controllability and observability of each resonance mode to deselect insignificant resonance modes. State space modeling of realistic control conditions are formulated in terms of uncertainty variables. These uncertainty variables include uncertainty in actuators and sensors performances, uncertainty in the knowledge of resonance frequencies of the structure, damping ratio, static stiffness, unmodeled high resonance vibration modes, etc. The simplified model and the uncertainty model are combined as an integrated state space model, and then implemented in the H control theory for controller parameterization. The low-order robust controller is easy to implement in an analog circuit to provide a low cost solution in a variety of applications where cost may be a limiting factor.

1.
Nashif, A. D., Jones, D. I. G., and Henderson, J. P., 1985, Vibration Damping, Wiley, New York.
2.
Laudien, E., and Niesl, G., 1990, “Noise Level Reduction Inside Helicopter Cabins,” Proceedings of the Sixteenth European Rotorcraft Forum, Glasgow, UK, pp. 18–21.
3.
Elliot, S. J., Stothers, I. M., and Nelson, P. A., 1987, “A Multiple Error LMS Algorithm and Its Application to the Active Control of Sound and Vibration,” IEEE Trans. Acoust., Speech, Signal Process., pp. 1423–1434.
4.
Fuller, C. R., Silcox, R. J., Metcalf, V. L., and Brown, D. E. 1989, “Experiments on Structural Control of Sound Transmission Through an Elastic Plate,” Proceedings of American Control Conference, pp. 2079–2084.
5.
Fuller, R. C., 1990, “Active Control of Sound Transmission/Radiation from Elastic Plates by Vibration Inputs: I Analysis,” ASME J. Vibr. Acoust., pp. 1–15.
6.
Meirovitch, L., and Thangjitham, S., 1990, “Active Control of Sound Radiation Pressure,” ASME J. Vibr. Acoust., pp. 237–244.
7.
Baz
,
A.
, and
Ro
,
J.
,
1996
, “
Vibration of Plate with Active Constrained Layer Damping
,”
Smart Mater. Struct.
,
5
, pp.
272
280
.
8.
Baz
,
A.
, and
Poh
,
S.
,
1988
, “
Performance of an Active Control System with Piezoelectric Actuators
,”
J. Sound Vib.
,
126
, No.
2
, pp.
327
343
.
9.
Baz, A., and Ro, J., 1993, “Finite Element Modeling and Performance of Active Constrained Layer Damping,” Ninth VPI & SU Conference on Dynamics & Control of Large Structures, pp. 345–358.
10.
Hanagud, S., Obal, M. W., and Calise, A. J., 1992, “Optimal Vibration Control by the Use of Piezoelectric Sensors and Actuators,” J. Guid. Control Dyn., 15, No. 5.
11.
Balachandran
,
B.
,
Sampath
,
A.
, and
Park
,
J.
,
1996
, “
Active Control of Noise in a Three Dimensional Enclosure
,”
Smart Mater. Struct.
,
5
, pp.
89
97
.
12.
Lim
,
Y. H.
,
Varadan
,
V. V.
, and
Varadan
,
V. K.
,
1997
, “
Closed Loop Finite Element Modeling of Active Structural Damping in the Frequency Domain
,”
Smart Mater. Struct.
,
6
, No.
2
, pp.
161
168
.
13.
Varadan
,
V. V.
,
Senthil
,
G. V.
,
Lim
,
Y. H.
, and
Varadan
,
V. K.
,
1998
, “
Radiated Noise Control via Structural Vibration Control
,”
SPIE Proc.
, Vol.
3323
, pp.
546
553
.
14.
Fluder, O., and Kashani, R., 1992, “Robust Control of Structure Borne Noise, Using H∞ Control Method,” ASME Active Control of Noise and Vibration, DSC, Vol. 38, pp. 191–204.
15.
Kim
,
J. H.
,
Choi
,
S. B.
,
Cheong
,
C. C.
,
Han
,
S. S.
, and
Lee
,
J. K.
,
1999
, “
H∞ Control of Structure-Borne Noise of a Plate Featuring Piezoceramic Actuators
,”
Smart Mater. Struct.
,
8
, pp.
1
12
.
16.
Clark
,
R.
, and
Cox
,
D.
,
2000
, “
Active Controller Design for Acoustic Radiation Using Mixed Norm Optimization
,”
J. Acoust. Soc. Am.
,
108
, No.
3
, Part 1, pp.
1345
1348
.
17.
Baz
,
A.
,
1998
, “
Robust Control of Active Layer Damping
,”
J. Sound Vib.
,
221
, No.
3
, pp.
467
480
.
18.
Pai
,
P.
,
Wen
,
B.
,
Naser
,
A.
, and
Schulz
,
M.
,
1998
, “
Structural Vibration Control Using PZT Patches and Non-linear Phenomena
,”
J. Sound Vib.
,
215
, No.
2
, pp.
273
296
.
19.
Baek
,
K.
, and
Elliott
,
S.
,
2000
, “
The Effect of Plant and Disturbance Uncertainties in Active Control System on the Placement of Transducers
,”
J. Sound Vib.
,
230
, No.
2
, pp.
261
289
.
20.
Tseng
,
W.
,
Rafaely
,
B.
, and
Elliott
,
S.
,
2000
, “
Local Sound Active Control Using 2-Norm and Inf-Norm Pressure Minimization
,”
J. Sound Vib.
,
234
, No.
3
, pp.
427
439
.
21.
Moore, B. C., 1981, “Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction,” IEEE Trans. Autom. Control, 26, No. 2.
22.
Pernebo
,
L.
, and
Silverman
,
L. M.
,
1982
, “
Model Reduction via Balanced State Space Representation
,”
IEEE Trans. Autom. Control
,
AC-27
, No.
2
, pp.
382
387
.
23.
Kung
,
S. Y.
, and
Lin
,
D. W.
,
1981
, “
Optimal Hankel-Norm Model Reductions: Multivariable Systems
,”
IEEE Trans. Autom. Control
,
AC-26
,
No. 4
No. 4
.
24.
Saponov
,
M. G.
,
Limebeer
,
D. J. N.
, and
Chiang
,
R. Y.
,
1989
, “
Simplifying theH∞ Theory via Loop-Shifting, Matrix-Pencil and Descriptor Concepts
,”
Int. J. Control
,
50
, No.
6
, pp.
2467
2488
.
25.
Peterson
,
I. R.
,
1987
, “
Disturbance Attenuation and H∞ Optimization: A De-sign Method Based on the Algebraic Riccati Equation
,”
IEEE Trans. Autom. Control
,
AC-32
, pp.
427
429
.
26.
Zhou
,
K.
,
1992
, “
On the Parameterization of H∞ Controllers
,”
IEEE Trans. Autom. Control
,
37
, No.
9
, pp.
1442
1445
.
27.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
,
1989
, “
State Space Solutions to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
,
34
, No.
8
, pp.
831
847
.
28.
Zhou, K., Doyle, J. C., and Glover, K., 1995, Robust and Optimal Control, Prentice Hall, New Jersey 07458.
29.
Fan
,
M. H.
,
Tits
,
A. L.
, and
Doyle
,
J. C.
,
1991
, “
Robustness in the Presence of Mixed Parametric Uncertainty and Unmodeled Dynamics
,”
IEEE Trans. Autom. Control
,
AC-36
, No.
1
, pp.
25
38
.
You do not currently have access to this content.