In this paper, the nonlinear oil film forces of bearings and dampers with free boundary conditions are determined by the finite element method (FEM) and the complementary solution for variational inequalities. The mode synthesis technique is used to reduce the linear degrees of the high order finite element model. The periodic solution of the system and its stability are determined by the Poincare´ mapping method and the Floquet theory, respectively. The results of experiment show that squeeze film dampers (SFDs) can effectively prevent subsynchronous and nonsynchronous vibrations and some structural parameters have significant effects on the dynamic behaviors of the system. Comparing the numerical results with those of experiment, it is shown that the above theories and schemes are feasible and efficient in analyzing nonlinear behaviors of the high-order dynamic system with local nonlinearities.

1.
White, D. C., 1970, “Squeeze Film Journal Bearings,” Ph.D thesis, Churchill College, the University of Cambridge.
2.
Mohan
,
S.
, and
Hahn
,
E. J.
,
1974
, “
Design of Squeeze Film Damper Supports for Rigid Rotors
,”
ASME J. Eng. Ind.
96
, pp.
976
982
.
3.
Cookson
,
R. A.
, and
Kossa
,
S. S.
,
1979
, “
The Effectiveness of Squeeze Film Damper Bearings Supporting Rigid Rotors without a Centralizing Springs
,”
ASME J. Mech. Des.
,
21
, pp.
639
650
.
4.
Botman
,
M.
,
1976
, “
Experiments on Oil Film Dampers for Turbomachinery
,”
ASME J. Eng. Power
,
98
, pp.
393
400
.
5.
Sykes
,
J. E. H.
, and
Holmes
,
R.
,
1990
, “
The Effects of Bearing Misalignment on the Nonlinear Vibration of Aero-Engine Rotor-Damper Assemblies
,”
Proc. Inst. Mech. Eng., Part G
,
24
, pp.
83
99
.
6.
Nataraj
,
C.
, and
Nelson
,
H. D.
,
1989
, “
Periodic Solutions in Rotor Dynamic Systems with Nonlinear Supports: a General Approach
,”
ASME J. Vibr. Acoust.
,
111
, pp.
187
193
.
7.
Zhao
,
J. Y.
,
Linnett
,
I. W.
, and
Mclean
,
L. J.
,
1994a
, “
Stability and Bifurcation of Unbalanced Response of a Squeeze Film Damped Flexible Rotor
,”
ASME J. Tribol.
,
116
, pp.
361
368
.
8.
Zhao
,
J. Y.
,
Linnett
,
I. W.
, and
Mclean
,
L. J.
,
1994b
, “
Subharmonic and Quasi-Periodic Motions of an Eccentric Squeeze Film Damper-Mounted Rigid Rotor
,”
ASME J. Vibr. Acoust.
,
116
, pp.
357
363
.
9.
Zhao
,
J. Y.
,
Linnett
,
I. W.
, and
Mclean
,
L. J.
,
1998
, “
Unbalance Response of a Flexible Rotor Supported by a Squeeze Film Damper
,”
ASME J. Vibr. Acoust.
,
120
, pp.
32
38
.
10.
Giberson
,
M. F.
,
1973
, “
Taming Rotor Whirl with Film-Damper Bearings
,”
J. Mach. Des.
, No.
22
, pp.
176
178
.
11.
Nikolajsent
,
J. L.
, and
Holmes
,
R.
,
1979
, “
Investigation of Squeeze Film Isolators for the Vibration Control of a Flexible Rotor
,”
ASME J. Mech. Des.
,
21
, No.
4
, pp.
247
252
.
12.
Zhang
,
Jiazhong
,
Xu
,
Qingyu
, and
Zheng
,
Tiesheng
,
1998
, “
Stability and Bifurcation of a Rotor-Fluid Film Bearing System with Squeeze Film Damper
,”
ASME J. Vibr. Acoust.
,
120
, pp.
1003
1006
.
13.
Kanki
,
H.
,
Kaneko
,
Y.
,
Kurosawa
,
M.
, and
Yamamoto
,
T.
,
1998
, “
Prevention of Low-Frequency Vibration of High-Capacity Steam Turbine Units by Squeeze-Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
391
396
.
14.
Kinderlenhrer, D., and Stanpacchia, G., 1980, An Introduction to Variational Inequalities and their Applications, New York, Acad Press.
15.
Tiesheng
,
Zheng
,
Qingyu
,
Xu
, and
Li
,
Li
,
1995
, “
An Iterative Method for the Discrete Problem of a Class of Elliptical Variational Inequalities
,”
Appl. Math. Mech.
,
16
, pp.
351
358
.
16.
Nelson
,
H. D.
,
Meacham
,
W. L.
,
Fleming
,
D. P.
, and
Kascak
,
A. F.
,
1983
, “
Nonlinear Analysis of Rotor-Bearing Systems Using Component Mode Synthesis
,”
ASME J. Eng. Power
,
105
, pp.
606
614
.
17.
Slaats
,
P. M. A.
,
1995
, “
Modal Reduction Tools for Nonlinear Structural Dynamic
,”
Comput. Struct.
,
54
, pp.
1155
1171
.
18.
Iooss, G., and Joseph, D. D., 1989, Elementary Stability and Bifurcation Theory, Springer-Verlag, New York.
19.
Parker, T. S., 1989, Practical Numerical Algorithms for Chaotic Systems, New York, Springer-Verlag.
You do not currently have access to this content.