In this paper, a modified normal form approach is proposed for the analysis of high dimensional nonlinear systems. Using the modified approach, calculations of normal forms and, in particular, the related coefficients are carried out much more conveniently. Certain high dimensional systems, including systems with inner resonances, are investigated. These systems exist widely in engineering applications. To illustrate the approach, five examples are presented.

1.
Hassard, B. D., Kazarinoff, N. D., and Wan, Y. H., 1980, Theory and Applications of the Hopf Bifurcation, Cambridge University Press, Cambridge.
2.
Knobloch
,
E.
,
1986
, “
Normal Form Coefficients For the Nonresonant Double Hopf Bifurcation
,”
Phys. Lett. A
,
116
, pp.
365
368
.
3.
Huseyin, K., 1986, Multiple Parameter Stability Theory and its Applications, Oxford University Press.
4.
Yu
,
P.
, and
Huseyin
,
K.
,
1989
, “
Invariant Tori Arising at a General Critical Point of Co-dimension Three
,”
Appl. Math. Model.
,
13
, pp.
506
523
.
5.
Yu
,
P.
,
1998
, “
Computation of Normal Forms via a Perturbation Technique
,”
J. Sound Vib.
,
211
, pp.
19
38
.
6.
Wang
,
S. S.
, and
Huseyin
,
K.
,
1995
, “
Resonance Analysis of Nonlinear Systems with Compound Critical Points
,”
Int. J. Syst. Sci.
,
26
, pp.
543
553
.
7.
Chow, S. N., Li, C. Z., and Wang, D., 1994, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge.
8.
Chow
,
S. N.
,
Drachman
,
B.
, and
Wang
,
D.
,
1990
, “
Computation of Normal Forms
,”
J. Comput. Appl. Math.
,
29
, pp.
129
143
.
9.
Leung
,
A. Y. T.
, and
Zhang
,
Q. S.
,
1998
, “
Higher-order Normal Form and Period Averaging
,”
J. Sound Vib.
,
217
, pp.
795
806
.
10.
Zhang
,
W. Y.
,
Huseyin
,
K.
, and
Ye
,
M.
,
2000
, “
On the Computation of the Coefficients Associated with High Order Normal Forms
,”
J. Sound Vib.
,
232
, pp.
525
540
.
11.
Huseyin
,
K.
, and
Lin
,
R.
,
1991
, “
An Intrinsic Multiple-Scale Harmonic Balance Method for Non-linear Vibration and Bifurcation Problems
,”
Int. J. Nonlinear Mech.
,
26
, pp.
727
740
.
12.
Huseyin
,
K.
, and
Lin
,
R.
,
1992
, “
A Perturbation Method for the Analysis of Vibrations and Bifurcations Associated with Non-autonomous Systems, Part I: Non-resonance Case
,”
Int. J. Nonlinear Mech.
,
27
, pp.
203
217
.
13.
Zhang
,
W. Y.
,
Huseyin
,
K.
, and
Chen
,
Y. S.
,
1998
, “
A New Approach for Obtaining Normal Forms of Nonlinear Systems
,”
J. Sound Vib.
,
210
, pp.
609
625
.
14.
Zhang
,
W. Y.
,
Huseyin
,
K.
, and
Chen
,
Y. S.
,
1998
, “
On the Analysis of Certain High Dimensional Systems with Inner Resonances
,”
J. Sound Vib.
,
213
, pp.
739
756
.
15.
Mandadi
,
V.
, and
Huseyin
,
K.
,
1980
, “
Nonlinear Bifurcation Analysis of Non-Gradient Systems
,”
Int. J. Nonlinear Mech.
,
15
, pp.
159
172
.
16.
Zhang
,
W. Y.
, and
Huseyin
,
K.
,
2000
, “
On the Relation Between the Methods of Averaging and Normal Forms
,”
Appl. Math. Model.
,
24
, pp.
279
295
.
17.
Zhang
,
W. Y.
, and
Huseyin
,
K.
,
2000
, “
An Algebraic Approach for Obtaining Nilpotent Normal Forms in Dimension 4
,”
IMA J. Appl. Math.
,
64
, pp.
109
123
.
You do not currently have access to this content.