A linear damped hybrid (continuous/discrete components) model is developed in this paper to characterize the dynamic behavior of serpentine belt drive systems. Both internal material damping and external tensioner arm damping are considered. The complex modal analysis method is developed to perform dynamic analysis of linear non-self-adjoint hybrid serpentine belt-drive systems. The adjoint eigenfunctions are acquired in terms of the mode shapes of an auxiliary hybrid system. The closed-form characteristic equation of eigenvalues and the exact closed-form solution for dynamic response of the non-self-adjoint hybrid model are obtained. Numerical simulations are performed to demonstrate the method of analysis. It is shown that there exists an optimum damping value for each vibration mode at which vibration decays the fastest.

1.
Skutch
,
R.
,
1897
, “
Uber die Bewegung Eines Gespannten Fadens, Weicher Gezwungen ist, Durch Zwei Feste Punkte, mit Einer Constanten Geschwindigkeit zu gehen, und Zwischen denselben in Transversal-Schwingungen von Gerlinger Amplitude Versetzt Wird
,”
Ann. Phys. Chem.
,
61
, pp.
190
195
.
2.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.
3.
Mote
,
C. D.
, Jr.
,
1966
, “
On the Non-linear Oscillation of an Axially Moving String
,”
ASME J. Appl. Mech.
,
33
, pp.
463
464
.
4.
Bapat
,
V. A.
, and
Srinivasan
,
P.
,
1967
, “
Non-linear Transverse Oscillation in Traveling Strings by the Method of Harmonic Balance
,”
ASME J. Appl. Mech.
,
34
, pp.
775
777
.
5.
Moon
,
J.
, and
Wickert
,
J. A.
,
1997
, “
Non-linear Vibration of Power Transmission Belts
,”
J. Sound Vib.
,
200
, pp.
419
431
.
6.
Zhang
,
L.
, and
Zu
,
J. W.
,
1998
, “
Nonlinear Vibrations of Viscoelastic Moving Belts, Part I: Free Vibration Analysis
,”
J. Sound Vib.
,
216
, pp.
75
91
.
7.
Zhang
,
L.
, and
Zu
,
J. W.
,
1998
, “
Nonlinear Vibrations of Viscoelastic Moving Belts, Part 2: Forced Vibration Analysis
,”
J. Sound Vib.
,
216
, pp.
93
105
.
8.
Hawker, L. E., 1991, “A Vibration Analysis of Automotive Serpentine Accessory Drive Systems,” Ph.D. dissertation, University of Windsor, Ontario, Canada.
9.
Hwang
,
S. J.
,
Perkins
,
N. C.
,
Ulsoy
,
A. G.
, and
Meckstroth
,
R. J.
,
1994
, “
Rotational Response and Slip Prediction of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
116
, pp.
71
78
.
10.
Kraver
,
T. C.
,
Fan
,
G. W.
, and
Shah
,
J. J.
,
1996
, “
Complex Modal Analysis of a Flat Belt Pulley System with Belt Damping and Coulomb-Damped Tensioner
,”
ASME J. Mech. Des.
,
118
, pp.
306
311
.
11.
Ulsoy
,
A. G.
,
Whitsell
,
J. E.
, and
Hooven
,
M. D.
,
1985
, “
Design of Belt-Tensioner Systems for Dynamic Stability
,”
ASME J. Vibr. Acoust.
,
107
, pp.
282
290
.
12.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Free Vibration of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
118
, pp.
406
413
.
13.
Zhang
,
L.
, and
Zu
,
J. W.
,
1999
, “
Modal Analysis of Serpentine Belt Drive Systems
,”
J. Sound Vib.
,
222
, pp.
259
279
.
14.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Nonlinear Coupled Vibration Response of Serpentine Belt Drive Systems
,”
ASME J. Vib. Acoust.
,
118
, pp.
567
574
.
15.
Pesterev
,
A. V.
, and
Bergman
,
L. A.
,
1998
, “
Response of a Nonconservative Continuous System to a Moving Concentrated Load
,”
ASME J. Appl. Mech.
,
65
, pp.
436
444
.
16.
Yang
,
B.
,
1996
, “
Integral Formulas for Non-self-adjoint Distributed Dynamic Systems
,”
Am. Inst. Aeronaut. Astron. J.
,
34
, pp.
2132
2139
.
You do not currently have access to this content.