This paper presents closed-form mathematical models for an acoustic duct with general boundary conditions. These infinite-dimensional models are derived using symbolic computations. A new method to obtain finite dimensional approximations of infinite-dimensional models using quartic functions is presented. The theoretical models are compared with the experimental data obtained for the KSU duct. The experimental results of a new robust broadband feedback controller, designed using passivity-based techniques, are presented. The controller design is shown to be robust to the unmodeled dynamics and parametric uncertainty.
Issue Section:
Technical Papers
1.
Leug, P., 1936, “Process of silencing sound oscillations,” US Patent No. 2,043,416.
2.
Olsen
, H. F.
, and May
, E. G.
, 1953
, “Electronic sound absorber
,” J. Acoust. Soc. Am.
, 25
, No. 6
, pp. 1130
–1136
.3.
Nelson, P. A., and Elliott, S. J., 1992, Active Control of Sound, Academic Press, London.
4.
Elliott
, S. J.
, 1999
, “Down with noise
,” IEEE Spectr.
, pp. 54–61, June.5.
Jessel
, M.
, and Mangiante
, G.
, 1972
, “Active sound absorbers in an airduct
,” J. Sound Vib.
, 23
, pp. 383
–390
.6.
Swinbanks
, M. A.
, 1973
, “The active control of sound propogation in long ducts
,” J. Sound Vib.
, 27
, pp. 411
–436
.7.
Ross
, C. F.
, 1981
, “Demonstration of active control of broadband sound
,” J. Sound Vib.
, 74
, No. 3
, pp. 411
–417
.8.
Ross
, C. F.
, 1982
, “An algorithm for designing a broadband active sound control system
,” J. Sound Vib.
, 80
, pp. 373
–380
.9.
Roure
, A.
, 1985
, “Self-adaptive broadband active sound control system
,” J. Sound Vib.
, 101
, No. 3
, pp. 429
–441
.10.
Fuller
, C. R.
, and von Flotow
, A. H.
, 1995
, “Active control of sound and vibration
,” IEEE Control Syst. Mag.
, 16
, No. 6
, pp. 9
–19
, December.11.
Jiang
, F.
, Tsuji
, H.
, Ohmori
, H.
, and Sano
, A.
, 1997
, “Adaptation for active noise control
,” IEEE Control Syste. Mag.
, 17
, No. 6
, pp. 36
–47
, December.12.
Hu
, J.-S.
, 1995
, “Active sound attenuation in finite-length ducts using closed-form transfer function models
,” ASME J. Dyn. Syst., Meas., Control
, 117
, pp. 143
–154
, June.13.
Hu
, J.-S.
, Yu
, S.-H.
, and Hsieh
, C.-S.
, 1998
, “Application of model-matching techniques to feedforward active noise control design
,” IEEE Trans. Control Syst. Technol.
, 6
, No. 1
, pp. 33
–42
, January.14.
Hu, J., and Lin, J.-F., 1999, “Feedforward active noise controller design in ducts without independent noise source measurements,” in Proceedings of the American Control Conference, pp. 3265–3269, San Diego, June.
15.
Hong
, J.
, Akers
, J. C.
, Venugopal
, R.
, Lee
, M. N.
, Sparks
, A. G.
, Washabaugh
, P. D.
, and Bernstein
, D. S.
, 1996
, “Modeling, identification, and feedback control of noise in an acoustic duct
,” IEEE Trans. Control Syst. Technol.
, 4
, No. 3
, pp. 283
–291
, May.16.
Clark
, R. L.
, and Cole
, D. G.
, 1995
, “Active damping of enclosed sound fields through direct rate feedback control
,” J. Acoust. Soc. Am.
, 97
, No. 3
, pp. 1710
–1716
.17.
Hull
, A. J.
, Radcliffe
, C. J.
, and Southward
, S. C.
, 1993
, “Global active noise control of a one-dimensional acoustic duct using feedback controller
,” ASME J. Dyn. Syst., Meas., Control
, 115
, pp. 488
–494
, September.18.
Joshi, S. M., and Kelkar, A. G., 1999, “Robust passification via optimal sensor blending and control allocation,” in Proceedings of the American Control Conference, San Diego, CA, June 2–4.
19.
Kelkar, A. G., and Joshi, S. M., 1996, Control of Nonlinear Multibody Flexible Space Structures, Vol. 221 of Lecture Notes in Control and Information Sciences, Springer-Verlag, Albuquerque, NM.
20.
Kelkar, A. G., and Joshi, S. M., 1997, “Robust control of non-passive systems via passification,” in Proceedings of the American Control Conference, Albuquerque, NM, June 4–6, pp. 2657–2661.
21.
Kelkar, A. G., and Joshi, S. M., 1998, “Robust passification and control of non-passive systems,” in Proceedings of the American Control Conference, Philadelphia, PA, June 24–26, pp. 3133–3137.
22.
Pota, H. R., Reza Moheimani, S. O., and Smith, M., 1999, “Resonant controllers for flexible structures,” in Proceedings of IEEE International 38th Conference on Decision and Control, pp. 631–636, Phoenix, Arizona, 7–10 December.
23.
Morse, P. M., and Ingard, K. Uno, 1968, Theoretical Acoustics, McGraw-Hill, Sydney.
24.
Moheimani, S. O. R., Pota, H. R., and Petersen, I. R., 1998, “Active control of noise and vibration in acoustic ducts and flexible structures-a spatial control approach,” in Proceedings of the American Control Conference, pp. 2601–2605, Philadelphia, PA, 24–26 June.
25.
Venugopal
, R.
, and Bernstein
, D. S.
, 1998
, “State space modeling of an acoustic duct with an end-mounted speaker
,” ASME J. Vibr. Acoust.
, 120
, pp. 770
–775
.26.
Reza Moheimani, S. O., 1999, “Minimizing the effect of out of bandwidth modes in the truncated assumed modes models of structures,” in Proceedings of the American Control Conference, pp. 2718–2722, San Diego, June.
27.
Pota, H. R., and Kelkar, A. G., 2000, “On perfect noise cancelling controllers,” in Proceedings American Control Conference, Chicago, Illinois, 28–30 June, pp. 3018–3022.
28.
Kuo, S. M., and Morgan, D. R., 1996, Active Noise Control Systems, John Wiley & Sons, Brisbane.
29.
Pota
, H. R.
, and Alberts
, T. E.
, 1995
, “Multivariable transfer functions for a slewing piezoelectric laminate beam
,” ASME J. Dyn. Syst., Meas., Control
, 117
, No. 3
, pp. 352
–359
, September.30.
Acton, F. S., 1970, Numerical Methods That Work, Harper & Row, New York.
31.
Desoer, C. A., and Vidyasagar, M., 1975, Feedback Systems: Input-Output Properties, Academic Press, New York.
32.
Kelkar, A. G., and Pota, H. R., 2000, “Robust broadband control of acoustic duct,” Proceedings IEEE International Conference on Control Application, Anchorage, Alaska, 25–27 September, pp. 273–278.
Copyright © 2001
by ASME
You do not currently have access to this content.