The main purpose of this paper is to develop a fast converging semianalytical method for assessing the vibration effect on thin orthotropic skew (or parallelogram/oblique) plates. Since the geometry of the skew plate is not helpful in the mathematical treatments, the analysis is often performed by more complicated and laborious methods. A successive conjunction of the Kantorovich method and the transition matrix is exploited herein to develop a new modification of the finite strip method to reduce the complexity of the problem. The displacement function is expressed as the product of a basic trigonometric series function in the longitudinal direction and an unknown function that has to be determined in the other direction. Using the new transition matrix, after necessary simplification and the satisfaction of the boundary conditions, yields a set of simultaneous equations that leads to the characteristic matrix of vibration. The influence of the skew angle, the aspect ratio, the properties of orthotropy, and the prescribed boundary conditions are investigated. Convergence of the solution is investigated and the accuracy of the results is compared with that available from other numerical methods. The numerical results show that the convergence is rapidly deduced and the comparisons agree very well with known results. [S0739-3717(00)00202-6]

1.
Laura
,
P. A. A.
,
Luisoni
,
L. E.
, and
Sarmiento
,
G. S.
,
1980
, “
A Method for the Determination of the Fundamental Frequency of Orthotropic Plates of Polygonal Boundary Shape
,”
Sound Vib.
,
70
, pp.
77
84
.
2.
Bardell
,
N. S.
,
1992
, “
The Free Vibration of Skew Plates Using the Hierarchical Finite Element Method
,”
Comput. Struct.
,
45
, pp.
841
874
.
3.
Singh
,
B.
, and
Chakraverty
,
S.
,
1994
, “
Flexural Vibration of Skew Plates Using Boundary Characteristic Orthogonal Polynomials in Two Variables
,”
Sound Vib.
,
173
, No.
3
, pp.
157
178
.
4.
Liew
,
K. M.
, and
Wang
,
C. M.
,
1993
, “
Vibration Studies on Skew Plates: Treatment of Internal Line Supports
,”
Comput. Struct.
,
49
, No.
6
, pp.
941
951
.
5.
Liew
,
K. M.
, and
Lam
,
K. Y.
,
1990
, “
Application of Two Dimensional Orthogonal Plate Function to Flexural Vibration of Skew Plates
,”
J. Sound Vib.
,
139
, pp.
241
252
.
6.
Hota
,
V. S.
,
Rao
,
Ganga
, and
Chaudhary
,
V. K.
,
1988
, “
Analysis of Skew and Triangular Triangular Plates in Bending
,”
Comput. Struct.
,
28
, No.
2
, pp.
223
235
.
7.
Mcgee
,
O. G.
,
Graves
,
W. D.
, and
Butalia
,
T. S.
,
1994
, “
Natural Frequencies of Shear Deformable Rhombic Plates with Clamped and Simply Supported Edges
,”
Int. J. Mech. Sci.
,
36
, No.
12
, pp.
1133
1148
.
8.
Mcgee
,
O. G.
,
Graves
,
W. D.
,
Butalia
,
T. S.
, and
Owings
,
M. I.
,
1994
, “
Natural Frequencies of Shear De-formable Rhombic Plates with Clamped and Free Edge Conditions
,”
Comput. Struct.
,
53
, No.
3
, pp.
679
694
.
9.
Mukhopadhyay, M., 1978, “Skew Plates in Bending,” Journal of Engineering Mechanics Division, Proc. of ASCE EM4, pp. 758–761.
10.
Cusens, A. R., and Pama, R. P., 1975, Bridge Deck Analysis, Wiley, New York.
11.
Cheung, Y. K., and Tam, L. G., 1997, The Finite Strip Method, CRC Press, Boca Raton, FL.
12.
Brown, T., and Gali, A., 1978, “Finite Strip Analysis of Quadrilateral Plates in Bending,” J. Eng. Mech. Division, Proc. of ASCE EM, pp. 480–484.
13.
Mukhopadhyay, M., 1976, “Finite Strip Method of Analysis of Clamped Skew Plates in Bending,” Proc. Instn. Civ. Engr., Part 2, 61, pp. 189–195.
14.
Mizusawa
,
T.
,
1979
, “
Vibration of Skew Plates by Using β-Spline Functions
,”
Sound Vib.
,
62
, No.
2
, pp.
301
308
.
15.
Mizusawa
,
T.
,
1986
, “
Vibration and Buckling of Skew Plates: Plates with Edges Elastically Restrained Against Rotation
,”
Comput. Struct.
,
22
, No.
6
, pp.
987
994
.
16.
Mizusawa
,
T.
,
1987a
, “
Vibration of Skew Plates Carrying a Concentrated Mass
,”
Sound Vib.
,
116
, No.
3
, pp.
561
572
.
17.
Mizusawa
,
T.
,
1987b
, “
Vibration of Skew Plates Resting on Point Supports
,”
Sound Vib.
,
115
, No.
2
, pp.
243
251
.
18.
Mizusawa
,
T.
,
1994
, “
Application of the Spline Element Method To Analyze the Bending of Skew Plates
,”
Comput. Struct.
,
53
, No.
2
, pp.
439
448
.
19.
Aggarwala, B. D., 1967, “Bending of Parallelogram Plates,” J. Eng. Mech. Division, Proc. of ASCE EM, pp. 9–18.
20.
Wang
,
X. A.
,
Striz
,
G.
, and
Bert
,
C. W.
,
1994
, “
Buckling and Vibration Analysis of Skew Plates by the Differential Quadrature Method
,”
AIAA J.
,
32
, No.
4
, pp.
886
889
.
21.
Thangam Babu
,
P. V.
, and
Reddy
,
D. V.
,
1971
, “
Frequency Analysis of Skew Orthotropic Plates by the Finite Strip Method
,”
Sound Vib.
,
18
, pp.
465
474
.
22.
Srinivasan
,
R. S.
, and
Ramachandran
,
S. V.
,
1975
, “
Vibration of Generally Orthotropic Plates
,”
J. Acoust. Soc. Am.
,
57
, No.
5
, pp.
1113
1118
.
23.
Srinivasan
,
R. S.
, and
Munaswamy
,
K.
,
1975
, “
Frequency Analysis of Skew Orthotropic Point Supported Plates
,”
Sound Vib.
,
39
, pp.
207
216
.
24.
Sakata
,
T.
,
1976
, “
A Reduction Method For Problems of Vibration of Orthotropic Plates
,”
Sound Vib.
,
48
, No.
3
, pp.
405
412
.
25.
Sakata
,
T.
, and
Hayashi
,
T.
,
1982
, “
Natural Frequency of Clamped Orthotropic Skew Plate
,”
Sound Vib.
,
81
, No.
2
, pp.
287
298
.
26.
Hosokawa
,
K.
,
Terada
,
Y.
, and
Sakata
,
J.
,
1996
, “
Free Vibrations of Clamped Symmetrically Laminated Skew Plates
,”
Sound Vib.
,
189
, pp.
525
533
.
27.
Han
,
W.
, and
Dickinson
,
S. M.
,
1997
, “
Free Vibration of Symmetrically Laminated Skew Plates
,”
Sound Vib.
,
208
, pp.
367
390
.
28.
Farag, A. M., 1994, “Mathematical Analysis of Free and Forced Vibration of Rectangular Plate,” Ph.D. thesis, Faculty of Engineering, Alexandria University, Alexandria, Egypt.
29.
Zurmuhl, R., 1976, Numerical Analysis for Engineers and Physicists, Springer-Verlag, Berlin, Heidelberg, N.Y.
30.
Nair
,
P. S.
, and
Durvasula
,
S.
,
1973
, “
Vibration of Skew Plates
,”
Sound Vib.
,
26
, pp.
1
19
.
You do not currently have access to this content.