A new method is presented for identifying the local stiffness of a structure from vibration test data. The method is based on a projection of the experimentally measured flexibility matrix onto the strain energy distribution in local elements or regional superelements. Using both a presumed connectivity and a presumed strain energy distribution pattern, the method forms a well-determined linear least squares problem for elemental stiffness matrix eigenvalues. These eigenvalues are directly proportional to the stiffnesses of individual elements or superelements, including the cross-sectional bending stiffnesses of beams, plates, and shells, for example. An important part of the methodology is the formulation of nodal degrees of freedom as functions of the measured sensor degrees of freedom to account for the location offsets which are present in physical sensor measurements. Numerical and experimental results are presented which show the application of the approach to example problems.

1.
Alvin
K. F.
,
Peterson
L. D.
, and
Park
K. C.
,
1995
, “
A Method for Determining Minimum-Order Mass and Stiffness Matrices from Modal Test Data
,”
AIAA Journal
, Vol.
33
, No.
1
, pp.
128
135
.
2.
Blevins, R. D., 1993, Formulas for Natural Frequency and Mode Shape, Krieger Publishing, Malabar, FL.
3.
Doebling
S. W.
,
1996
, “
Minimum-Rank Optimal Update of Elemental Stiffness Parameters for Structural Damage Identification
,”
AIAA Journal
, Vol.
34
, No.
12
, December, pp.
2615
2621
.
4.
Doebling
S. W.
,
Peterson
L. D.
, and
Alvin
K. F.
,
1996
, “
Estimation of Reciprocal Residual Flexibility from Experimental Modal Data
,”
AIAA Journal
, Vol.
34
, No.
8
, August, pp.
1678
1685
.
5.
Greenwood, D. T., 1988, Principles of Dynamics, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, Chapter 2.
6.
Kaouk
M.
, and
Zimmerman
D. C.
,
1994
, “
Structural Damage Assessment Using a Generalized Minimum Rank Perturbation Theory
,”
AIAA Journal
, Vol.
32
, No.
4
, pp.
836
842
.
7.
Lim
T. W.
, and
Kashangaki
T. A.
,
1994
, “
Structural Damage Detection of Space Truss Structures Using Best Achievable Eigenvectors
,”
AIAA Journal
, Vol.
32
, No.
5
, pp.
1049
1057
.
8.
MATLAB, 1996, Using Matlab, The Mathworks, Inc., Natick, MA.
9.
Peterson, L. D., Alvin, K. F., Doebling, S. W., and Park, K. C, 1993, “Damage Detection Using Experimentally Measured Mass and Stiffness Matrices,” AIAA-93-1482 Proc. of the 34th AIAA Structures, Structural Dynamics, and Materials Conference.
10.
Peterson
L. D.
,
1995
, “
Efficient Computation of the Eigensystem Idealization Algorithm
,”
Journal of Guidance, Control, and Dynamics
, Vol.
18
, No.
3
, pp.
395
403
.
11.
Peterson
L. D.
, and
Alvin
K. F.
,
1997
, “
Time and Frequency Domain Procedure for Identification of Structural Dynamic Models
,”
Journal of Sound And Vibration.
, Vol.
201
, No.
1
, pp.
137
144
.
12.
Sheinman
I.
,
1994
, “
Damage Detection in Framed Structures
,”
AIAA Journal
, Vol.
32
, No.
5
, pp.
1103
1105
.
13.
Strang, G., 1988, Linear Algebra and Its Applications, Harcourt Brace Jovanovich, San Diego, CA.
14.
Zienkiewicz, O. C., and Taylor, R. L., 1994, The Finite Element Method, Volume I, 4th Ed., McGraw-Hill, London, Chapter 6.
This content is only available via PDF.
You do not currently have access to this content.