The method of annular finite elements with variable thickness is applied for analyzing the lateral vibration of thin annular and circular plates. The material of the plates may be of isotropic or polar orthotropic and the plate thickness may vary arbitrarily with the radius. Natural frequencies and mode shapes of the axisymmetric and nonaxi-symmetric modes are obtained. The numerical convergence of the method has been tested and comparisons have been made with the results obtained in other studies. It has been proved that the convergence of this method is very rapid and obtained results are very accurate.

1.
Leissa, A. W., 1969, Vibration of Plates, (NASA SP 160). Washington, D. C., U. S. Government Printing Office.
2.
Vogel
S. M.
, and
Skinner
D. W.
,
1965
, “
Natural Frequencies of Transversely Vibrating Annular Plates
,”
ASME Journal of Applied Mechanics
, Vol.
32
, pp.
926
931
.
3.
Itao
K.
, and
Crandall
S. H.
,
1979
, “
Natural Modes and Natural Frequencies of Uniform, Circular, Free Edge Plates
,”
ASME Journal of Applied Mechanics
, Vol.
46
, pp.
448
453
.
4.
Leissa
A. W.
, and
Narita
Y.
,
1980
, “
Natural Frequencies of Simply Supported Circular Plates
,”
Journal of Sound and Vibration
, Vol.
70
, pp.
221
229
.
5.
Avalos
D. R.
, and
Laura
P. A. A.
,
1979
, “
A Note on Transverse Vibrations of Annular Plates Elastically Restrained Against Rotation Along the Edges
,”
Journal of Sound and Vibration
, Vol.
66
, No.
1
, pp.
63
67
.
6.
Vijayakumar
K.
, and
Ramaiah
G. K.
,
1972
, “
On the Use of a Coordinate Transformation for Analysis of Axisymmetric Vibration of Polar Orthotropic Annular Plates
,”
Journal of Sound and Vibration
, Vol.
24
, pp.
165
175
.
7.
Narita
Y.
,
1984
, “
Natural Frequencies of Completely Free Annular and Circular Plates Having Polar Orthotrophy
,”
Journal of Sound and Vibration
, Vol.
92
, pp.
33
38
.
8.
Greenberg
J. B.
, and
Stavsky
Y.
,
1979
, “
Flexural Vibrations of Certain Full and Annular Composite Orthotropic Annular Plates
,”
The Journal of the Acoustical Society of America
, Vol.
66
, pp.
501
508
.
9.
Ginesu
F.
,
Picasso
B.
, and
Priolo
P.
,
1979
, “
Vibration Analysis of Polar Orthotropic Annular Discs
,”
Journal of Sound and Vibration
, Vol.
65
, pp.
97
105
.
10.
Gorman
D. G.
,
1982
, “
Natural Frequencies of Polar Orthotropic Uniform Annular Plates
,”
Journal of Sound and Vibration
, Vol.
80
, pp.
145
154
.
11.
Soni
S. R.
, and
Amba-Rao
C. L.
,
1975
, “
Axisymmetric Vibrations of Annular Plates of Variable Thickness
,”
Journal of Sound and Vibration
, Vol.
38
, pp.
465
473
.
12.
Gupta
U. S.
,
Lal
R.
, and
Verma
C. P.
,
1986
, “
Buckling and Vibration of Polar Orthotropic Annular Plates of Variable Thickness
,”
Journal of Sound and Vibration
, Vol.
10
, pp.
357
369
.
13.
Sankaranarayanan
N.
,
Chandrasekaran
K.
, and
Ramaiyan
G.
,
1985
, “
Axisymmetric Vibration of layered annular plates with linear variation in thickness
,”
Journal of Sound and Vibration
, Vol.
99
, pp.
351
360
.
14.
Laura
P. A. A.
,
Filipich
C.
, and
Santos
R. D.
,
1977
, “
Static and Dynamic Behavior of Circular Plates of Variable Thickness Elastically Restrained Along the Edges
,”
Journal of Sound and Vibration
, Vol.
52
, No.
2
, pp.
243
251
.
15.
Raju
I. S.
,
Plakasa Rao
B.
, and
Venkateswara Rao
G.
,
1974
, “
Axisymmetric Vibrations of Linearly Tapered Annular Plates
,”
Journal of Sound and Vibration
, Vol.
32
, pp.
507
512
.
16.
Gorman
D. G.
,
1983
, “
Natural Frequencies of Transverse Vibration of Polar Orthotropic Variable Thickness Annular Plates
,”
Journal of Sound and Vibration
, Vol.
86
, pp.
47
60
.
17.
Conway
H. D.
,
Becker
E. C. H.
, and
Dubil
J. F.
,
1964
, “
Vibration Frequencies of Tapered Bars and Circular Plates
,”
ASME Journal of Applied Mechanics
, Vol.
31
, pp.
329
331
.
18.
Laura
P. A. A.
, and
Valerga de Greco
B.
,
1981
, “
A Note on Vibrations and Elastic Stability of Circular Plates With Thickness Varying in Bilinear Fashion
,”
Journal of Sound and Vibration
, Vol.
79
, pp.
306
310
.
19.
Singh
B.
, and
Saxena
V.
,
1995
, “
Axisymmetric Vibration of a Circular Plate With Double Linear Variable Thickness
,”
Journal of Sound and Vibration
, Vol.
179
, No.
5
, pp.
879
897
.
20.
Singh
B.
, and
Chakraverty
S.
,
1992
, “
Transverse Vibration of Circular and Elliptic Plates With Quadratically Varying Thickness
,”
Applied Mathematical Modelling
, Vol.
16
, pp.
269
274
.
21.
Barakat
R.
, and
Baumann
E.
,
1968
, “
Axisymmetric Vibrations of a Thin Circular Plate Having Parabolic Thickness Variation
,”
The Journal of the Acoustical Society of America
, Vol.
44
, No.
2
, pp.
641
643
.
22.
Kim
C. S.
, and
Dickinson
S. M.
,
1989
, “
On the Lateral Vibration of Thin Annular and Circular Composite Plates Subject to Certain Complicating Effects
,”
Journal of Sound and Vibration
, Vol.
130
, No.
3
, pp.
363
377
.
23.
Lenox
T. A.
, and
Conway
H. D.
,
1980
, “
An Exact, Closed Form, Solution for the Flexural Vibration of a Thin Annular Plate Having a Parabolic Thickness Variation
,”
Journal of Sound and Vibration
, Vol.
68
, No.
2
, pp.
231
239
.
This content is only available via PDF.
You do not currently have access to this content.