An analysis of nonlinear vibrations of an elastically-constrained rotating disk is developed. The equations of motion, which are two coupled nonlinear partial differential equations corresponding to the transverse force equilibrium and to the deformation compatibility, are first developed by using von Karman thin plate theory. Then the stress function is analytically solved from the compatibility equation by assuming a multi-mode transverse displacement field. Galerkin’s method is applied to transform the force equilibrium equation into a set of coupled nonlinear ordinary differential equations in terms of time functions. Finally, numerical integration is used to solve the time governing equations, and the effects of nonlinearity on the vibrations of a rotating disk are discussed.

1.
Dugdale
D. S.
,
1979
, “
Non-linear Vibration of a Centrally Clamped Rotating Disk
,”
International Journal of Engineering Science
, Vol.
17
, pp.
745
756
.
2.
Efstathiades
G. J.
,
1971
, “
A New Approach to the Large-Deflection Vibrations of Imperfect Circular Disks Using Galerkin’s Procedure
,”
Journal of Sound and Vibration
, Vol.
16
, pp.
231
253
.
3.
Filonenko-Borodich, M., 1965, Theory of Elasticity, Dover Publications Inc., New York.
4.
Hutton
S. G.
,
Chonan
S.
, and
Lehmann
B. F.
,
1987
, “
Dynamic Response of a Guided Circular Saw
,”
Journal of Sound and Vibration
, Vol.
112
, pp.
527
539
.
5.
Iwan
W. D.
, and
Moeller
T. L.
,
1976
, “
The Stability of a Spinning Elastic Disk with a Transverse Load System
,”
ASME Journal of Applied Mechanics
, Vol.
43
, pp.
485
490
.
6.
Mote
C. D.
,
1977
, “
Moving-Load Stability of a Circular Plate on a Floating Central Collar
,”
Journal of the Acoustical Society of America
, Vol.
61
, pp.
439
447
.
7.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, Wiley-Interscience, John Wiley & Sons, New York.
8.
Nowinski
J. L.
,
1964
, “
Nonlinear Transverse Vibrations of a Spinning Disk
,”
ASME Journal of Applied Mechanics
, Vol.
31
, pp.
72
78
.
9.
Nowinski
J. L.
,
1984
, “
Nonlinear Vibrations of an Elastic Disk Rotating in a Viscous Fluid
,”
Ingenieur-Archiv
, Vol.
54
, pp.
291
300
.
10.
Ono
K.
,
Chen
J.-S.
, and
Bogy
D. B.
,
1991
, “
Stability Analysis for the Head-Disk Interface in a Flexible Disk Drive
,”
ASME Journal of Applied Mechanics
, Vol.
58
, pp.
1005
1014
.
11.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1989, Numerical Recipes, Cambridge University Press, London.
12.
Soudack
A. C.
,
Hutton
S. G.
, and
Yang
L.
,
1993
, “
Nonlinear Natural Responses of a Rotating Circular String
,”
Nonlinear Dynamics
, Vol.
4
, pp.
1
23
.
13.
Tobias
S. A.
, and
Arnold
R. N.
,
1957
, “
The Influence of Dynamical Imperfection on the Vibration of Rotating Disks
,”
Proceedings of the Institution of Mechanical Engineers
, Vol.
171
, pp.
669
690
.
14.
Yang, L., and Hutton, S. G., 1991, “Experimental Results for the Supercritical Response of Circular Saws,” Proceedings of Tenth International Wood Machining Seminar, University of California, Berkeley, USA, pp. 110–123.
15.
Yang, L., 1995, “Stability Characteristics of a Constrained Rotating Disk,” Ph.D. Thesis, University of British Columbia, Canada.
16.
Young
T. H.
,
1992
, “
Nonlinear Transverse Vibrations and Stability of Spinning Disks with Nonconstant Spinning Rate
,”
ASME JOURNAL OF VIBRATION AND ACOUSTICS
, Vol.
114
, pp.
506
513
.
17.
Yokochi
H.
,
Tsuchikawa
S.
, and
Kimura
S.
,
1993
, “
Vibration Characteristics of a Rotating Circular Saw III—Non-Unear Vibration and Coupled Vibration
,”
Mokuzai Gakkaishi
, Vol.
39
, pp.
776
782
.
This content is only available via PDF.
You do not currently have access to this content.