A hybrid inverse mode problem is formulated for a fixed-fixed mass-spring model. A problem of eigenvalue analysis and its inverse problem are combined in this hybrid inverse mode formulation. It is shown if all the masses and the mid-span stiffnesses of the model are prescribed, then the stiffnesses of the left and right spans (side-spans) can be found for a specified lowest eigenvalue and a specified set of lowest-mode drifts in the side-spans. Sufficient conditions are introduced and proved for a specified eigenvalue and a specified set of drifts in the side-spans to provide positive stiffnesses of the side-spans and to be those in the lowest eigenvibration. A set of solution stiffnesses in the side-spans is derived uniquely in closed form.

1.
Barcilon
V.
,
1974
, “
On the Uniqueness of Inverse Eigenvalue Problems
,”
Geophysical Journal of the Royal Astronomical Society
,
38
, pp.
287
298
.
2.
Barcilon
V.
,
1976
, “
Inverse Problem for a Vibrating Beam
,”
Journal of Applied Mathematics and Physics
, Vol.
27
, pp.
347
358
.
3.
Barcilon
V.
,
1982
, “
Inverse Problem for the Vibrating Beam in the Free-Clamped Configuration
,”
Philosophical Transactions of the Royal Society of London
, A
304
, pp.
211
251
.
4.
Barcilon
V.
,
1987
, “
Sufficient Conditions for the Solution of the Inverse Problem for a Vibrating Beam
,”
Inverse Problems
, Vol.
3
, pp.
181
193
.
5.
Boley
D.
, and
Golub
G. H.
,
1987
, “
A Survey of Matrix Inverse Eigenvalue Problems
,”
Inverse Problems
, Vol.
3
, pp.
595
622
.
6.
Courant, R., and Hilbert, D., 1953, Methods of Mathematical Physics; Vol. I, Interscience Publishers Inc., p. 286.
7.
de Boor
C.
, and
Golub
G. H.
,
1978
, “
The Numerically Stable Reconstruction of a Jacobi Matrix from Spectral Data
,”
Linear Algebra and Its Applications
, Vol.
21
, pp.
245
260
.
8.
Gantmacher, F. R., 1959, The Theory of Matrices, Vol. II, Chelsea Publishing Company, New York, p. 105.
9.
Gladwell
G. M. L.
,
1984
, “
The Inverse Problem for the Vibrating Beam
,”
Proceedings of the Royal Society of London
, A
393
, pp.
277
295
.
10.
Gladwell
G. M. L.
,
1986
a, “
Inverse Problems in Vibration
,”
ASME Applied Mechanics Reviews
, Vol.
39
, No.
7
, pp.
1013
1018
.
11.
Gladwell, G. M. L., 1986b, Inverse Problems in Vibration, Martinus Nijhoff Publishers.
12.
Gladwell
G. M. L.
,
1986
c, “
The Inverse Mode Problem for Lumped-Mass Systems
,”
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
39
, Part 2, pp.
297
307
.
13.
Gladwell
G. M. L.
,
Willms
N. B.
,
He
B.
, and
Wang
D.
,
1989
, “
How Can We Recognize an Acceptable Mode Shape for a Vibrating Beam?
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
42
, Part 2, pp.
303
316
.
14.
Gladwell
G. M. L.
, and
Zhu
B. R.
,
1992
, “
Inverse Problems for Multidimensional Vibrating Systems
,”
Proceedings of the Royal Society of London
, A
439
, pp.
511
530
.
15.
Lancaster
P.
, and
Maroulas
J.
,
1987
, “
Inverse Eigenvalue Problems for Damped Vibrating Systems
,”
Journal of Mathematical Analysis and Applications
,
123
(
1
), pp.
238
261
.
16.
Meirovitch, L., 1980, Computational Methods in Structural Dynamics, Sijthoff & Noordhoff, p, 157.
17.
Minas
C.
, and
Inman
D. J.
,
1990
, “
Matching Finite Element Models to Modal Data
,”
ASME JOURNAL OF VIBRATION AND ACOUSTICS
, Vol.
112
, pp.
84
92
.
18.
Nakamura
Tsuneyoshi
, and
Yamane
T.
,
1986
, “
Optimum Design and Earthquake-Response Constrained Design of Elastic Shear Buildings
,”
Earthquake Engineering and Structural Dynamics
, Vol.
14
, pp.
797
815
.
19.
Nakamura, Tsuneyoshi, and Takewaki, I., 1989, “Earthquake-Response Constrained Design of Pile-Supported Elastic Shear Buildings for Site-Dependent Response Spectra,” Proceedings of the 9th World Conference on Earthquake Engineering, Vol. V, pp. 1043–1048.
20.
Porter
B.
,
1970
, “
Synthesis of Linear Lumped-Parameter Vibrating Systems by an Inverse Holzer Technique
,”
Journal of Mechanical Engineering Science
, Vol.
12
, No.
1
, pp.
17
19
.
21.
Ram
Y. M.
,
1994
, “
Inverse Mode Problems for the Discrete Model of a Vibrating Beam
,”
Journal of Sound and Vibration
, Vol.
169
, No.
2
, pp.
239
252
.
22.
Ram
Y. M.
, and
Gladwell
G. M. L.
,
1994
, “
Constructing a Finite Element Model of a Vibratory Rod From Eigendata
,”
Journal of Sound and Vibration
, Vol.
169
, No.
2
, pp.
229
237
.
23.
Ram
Y. M.
, and
Caldwell
J.
,
1992
, “
Physical Parameters Reconstruction of a Free-Free Mass-Spring System from Its Spectra
,”
SIAM Journal of Applied Mathematics
, Vol.
52
, No.
1
, pp.
140
152
.
24.
Starek
L.
, and
Inman
D. J.
,
1991
, “
On the Inverse Vibration Problem with Rigid-Body Modes
,”
ASME Journal of Applied Mechanics
, Vol.
58
, pp.
1101
1104
.
25.
Starek
L.
, and
Inman
D. J.
,
1995
, “
A Symmetric Inverse Vibration Problem with Overdamped Modes
,”
Journal of Sound and Vibration
, Vol.
181
, No.
5
, pp.
893
903
.
26.
Takewaki
I.
, and
Nakamura
Tsuneyoshi
,
1995
, “
Hybrid Inverse Mode Problems for FEM-Shear Models
,”
ASCE Journal of Engineering Mechanics
, Vol.
121
, No.
8
, pp.
873
880
.
27.
Wilkinson, J. H., 1965, The Algebraic Eigenvalue Problem, Clarendon Press, p, 300.
28.
Yanai, H., 1980, The Inverse of the Triple Diagonal Matrix, Keio Univ., Tokyo, p. 34.
This content is only available via PDF.
You do not currently have access to this content.