Timoshenko beam theory is used to model a flexible slewing link with an attached payload using two different rotating frames of reference: pseudo-pinned and pseudo-clamped. The boundary conditions are presented for both formulations; these lead naturally to the frequency equation for the link. The infinite dimensional model of the slewing link is then approximated by a finite dimensional model. Finally, these two formulations are shown to be equivalent through a simple transformation.

1.
Abbas
B. A. H.
,
1986
, “
Dynamic Stability of a Rotating Timoshenko Beam With a Flexible Root
,”
Journal of Sound and Vibration
, Vol.
108
, No.
1
, pp.
25
32
.
2.
Bellezza, F., Lanari, L., and Ulivi, G., 1990, “Exact Modeling of the Flexible Slewing Link,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinatti, OH, Vol. 3, pp. 734–739.
3.
Datta
P. K.
, and
Ganguli
R.
,
1990
, “
Vibration Characteristics of a Rotating Blade with Localized Damage Including the Effects of Shear Deformation and Rotary Inertia
,”
Computers and Structures
, Vol.
36
, No.
6
, pp.
1129
1133
.
4.
D’Eleuterio
G. M. T.
,
1992
, “
Dynamics of an Elastic Multibody Chain: Part C—Recursive Dynamics
,”
Journal of Dynamics & Stability of Systems
, Vol.
7
, No.
2
, pp.
61
89
.
5.
D’Eleuterio, G. M. T., and Bornath, A. M. C., 1993, “Recursive Dynamics for Elastic Multibody Chains based on System Coordinates,” Second International Conference on the Dynamics and Control of Space Structures, Cranfield University, Cranfield, England.
6.
Du
H.
,
Lim
M. K.
, and
Liew
K. M.
,
1994
, “
A Power Series Solution for Vibration of a Rotating Timoshenko Beam
,”
Journal of Sound and Vibration
, Vol.
175
, No.
4
, pp.
505
523
.
7.
Huang
T. C.
,
1961
, “
The Effect of Rotary Inertia and of Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams With Simple End Conditions
,”
ASME Journal of Applied Mechanics
, Vol.
28
, pp.
579
584
.
8.
Huang, T. C, 1964, “Eigenvalues and Modifying Quotients of Vibration of Beams,” Report No. 25, Engineering Experiment Station, University of Wisconsin, Madison, WI.
9.
Hughes
P. C.
, and
Sincarsin
G. B.
,
1989
, “
Dynamics of an Elastic Multibody Chain: Part B—Global Dynamics
,”
Journal of Dynamics & Stability of Systems
, Vol.
4
, No.
3–4
, pp.
227
244
.
10.
Mitchell
T. P.
, and
Bruch
J. C.
,
1988
, “
Free Vibrations of a Flexible Arm Attached to a Compliant Finite Hub
,”
ASME JOURNAL OF VIBRATION, ACOUSTICS, STRESS, AND RELIABILITY IN DESIGN
, Vol.
110
, pp.
118
120
.
11.
Naguleswaran
S.
,
1994
, “
Lateral Vibration of a Centrifugally Tensioned Uniform Euler-Bernoulli Beam
,”
J. Sound and Vibration
, Vol.
176
, No.
5
, pp.
613
624
.
12.
Sharf
I.
, and
D’Eleuterio
G. M. T.
,
1992
, “
Parallel Simulation Dynamics for Elastic Multibody Chains
,”
IEEE Transactions on Robotics and Automation
, Vol.
8
, No.
5
, pp.
597
606
.
13.
Stafford
R. O.
, and
Giurgiurtiu
V.
,
1975
, “
Semi-Analytic Methods for Rotating Timoshenko Beams
,”
International Journal of Mechanical Science
, Vol.
17
, pp.
719
727
.
14.
Strutt, J. W., (Lord Rayleigh) 1877, Theory of Sound, Macmillan, London.
15.
Timoshenko
S. P.
,
1921
, “
On the Correction for Shear or the Differential Equations for Transverse Vibration of Prismatic Bars
,”
Philosophy Magazine
, Ser. 6, Vol.
41
, pp.
744
746
.
16.
Timoshenko, S., Young, D. H., and Weaver, W., 1974, Vibration Problems in Engineering, Fourth Edition, John Wiley & Sons, New York.
17.
Wang
F. Y.
, and
Guan
G.
,
1994
, “
Influences of Rotatory Inertia, Shear and Loading on Vibrations of Flexible Manipulators
,”
J. Sound and Vibration
, Vol.
171
, No.
4
, pp.
433
452
.
18.
White, M. W. D., and Heppler, G. R., 1993a, “Dynamics of Timoshenko Beams with Attached Rigid Bodies,” Proceedings of the Second International Conference on the Dynamics and Control of Space Structures, Cranfield University, Cranfield, England, pp. 209–224.
19.
White, M. W. D., and Heppler, G. R., 1993b, “Timoshenko Beam Theory with Modeling Applications,” ConStruct TR-93-001, University of Waterloo, Waterloo, Ontario, Canada.
20.
White, M. W. D., and Heppler, G. R., 1993c, “Vibration of a Rotating Timoshenko Beam,” ConStruct TR-93-002, University of Waterloo, Waterloo, Ontario, Canada.
21.
White
M. W. D.
, and
Heppler
G. R.
,
1995
, “
Vibration Modes And Frequencies Of Timoshenko Beams With Attached Rigid Bodies
,”
ASME Journal Applied Mechanics
, Vol.
62
, No.
1
, pp.
193
199
.
22.
Yigit
A.
,
Scott
R. A.
, and
Ulsoy
A. G.
,
1988
, “
Flexural Motion of a Radially Rotating Beam Attached to a Rigid Body
,”
J. of Sound and Vibration
, Vol.
121
, No.
2
, pp.
201
210
.
23.
Zu
J. W. Z.
, and
Han
R. P. S.
,
1992
, “
Natural Frequencies and Normal Modes of a Spinning Timoshenko Beam with General Boundary Conditions
,”
ASME Journal of Applied Mechanics
, Vol.
59
, pp.
s197–s204
s197–s204
.
This content is only available via PDF.
You do not currently have access to this content.