The problem of calculating the vibrations of rotating structures has challenged analysts since it was observed that the use of traditional modal approaches may incorrectly lead to the prediction of infinite deformation when rotation rates exceed the first natural frequency. Much recently published work on beams has shown that such predictions are artifacts of incorporating incomplete kinematics into the analysis, but only simple structures such as individual beams and plates are addressed. The authors present a new approach to analyzing rotating flexible structures that applies to the rotation of general linear (unjointed) structures, using a system of nonlinearly coupled deformation modes. This technique, tentatively named a Method of Quadratic Components, utilizes a nonlinear configuration space in which all kinematic constraints are satisfied up to second order.

1.
Banerjee
A. K.
, and
Dickens
J. M.
,
1990
, “
Dynamics of an Arbitrary Flexible Body in Large Rotation and Translation
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
13
, pp.
221
227
.
2.
Canavin
J. R.
, and
Likins
P. W.
,
1977
, “
Floating Reference Frames for Flexible Spacecraft
,”
J. Spacecraft
, Vol.
14
, pp.
724
732
.
3.
Carne, T. G., Lobitz, D. W., Nord, A. R., and Watson, R. A., 1982, “Finite Element Analysis and Modal Testing of a Rotating Wind Turbine,” Proceedings of the 23rd Structures, Structural Dynamics and Materials Conference, AIAA/CP 824, New Orleans, May.
4.
Carne
T. G.
,
Lobitz
D. W.
,
Nord
A. R.
, and
Watson
R. A.
,
1988
, “
Finite Element Analysis and Modal Testing of a Rotating Wind Turbine
,”
International Journal of Analytic and Experimental Modal Analysis
, Vol.
3
, p.
32
32
.
5.
Cavin
R. K.
, and
Dusto
A. R.
,
1977
, “
Hamilton’s Principle: Finite-Element Methods and Flexible Body Dynamics
,”
AIAA Journal
, Vol.
15
, pp.
1684
1690
.
6.
Christensen
E. R.
, and
Lee
S. W.
,
1986
, “
Nonlinear Finite Element Modeling of the Dynamics of Unrestrained Flexible Structures
,”
Computers and Structures
, Vol.
23
, pp.
819
829
.
7.
Conte, S. D., and de Boor, C., 1972, Elementary Numerical Analysis, McGraw-Hill, New York, pp. 275–290.
8.
Craig
R. R.
,
1963
, “
Rotating Beam with Tip Mass Analyzed by a Variational Method
,”
Journal of the Acoustical Society of America
, Vol.
35
, pp.
990
993
.
9.
Downer, J. D., Park, K. C., and Chiou, J. C., 1990, “A Computational Procedure for Multibody Systems Including Flexible Beam Dynamics,” AIAA paper 90-1237-CP.
10.
Green, A. E., and Zerna, W., 1954, Theoretical Elasticity, Oxford at the Clarendon Press, pp. 57–61.
11.
Hanagud
S.
, and
Sarkar
S.
,
1989
, “
Problem of the Dynamics of Cantilever Beam Attached to a Moving Base
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
12
, pp.
438
441
.
12.
Ider
S. K.
, and
Amirouche
F. M. L.
,
1989
, “
Influence of Geometric Nonlinearities on the Dynamics of Flexible Tree-like Structures
,”
AIAA Journal of Guidance, Control, and Dynamics
, Vol.
12
, pp.
830
837
.
13.
Kane
T. R.
,
Ryan
R. R.
, and
Banerjee
A. K.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
AIAA J. Guidance, Control, and Dynamics
, Vol.
10
, pp.
139
151
.
14.
Kaza
K. R. V.
, and
Kvaternik
R. G.
,
1977
, “
Nonlinear Flap-lag-axial Equations for a Rotating Beam
,”
AIAA Journal
, Vol.
15
, pp.
871
874
.
15.
Koppens
W. P.
,
Sauren
A. A. H. J.
,
Veldpaus
F. E.
, and
van Campen
D. H.
,
1988
, “
The Dynamics of a Deformable Body Experiencing Large Displacements
,”
ASME Journal of Applied Mechanics
, Vol.
55
, September, pp.
676
680
.
16.
Laurenson
R. M.
,
1976
, “
Modal Analysis of Rotating Flexible Structures
,”
AIAA Journal
, Vol.
14
, pp.
1444
1450
.
17.
Laurenson
R. M.
,
1985
, “
Influence of Mass Representation on the Equations of Motion for Rotating Structures
,”
AIAA Journal
, Vol.
23
, pp.
1995
1998
.
18.
Likins
P. W.
,
Barbera
F. J.
, and
Baddeley
V.
,
1973
, “
Mathematical Modeling of Spinning Elastic Bodies for Modal Analysis
,”
AIAA Journal
, Vol.
11
, pp.
1251
1258
.
19.
Lobitz, D. W., 1984a, “A NASTRAN-based Computer Program for Structural Dynamics Analysis of Horizontal Axis Wind Turbines,” Proceedings of the Horizontal Axis Wind Turbine Technology Workshop, U.S. Department of Energy and NASA Lewis, Cleveland, May.
20.
Lobitz, D. W., 1984b, “NASTRAN-based Software for the Structural Dynamic Analysis of Vertical and Horizontal Axis Wind Turbines,” Proceedings of the European Wind Energy Conference and Exhibition Commission of the European Communities and European Wind Energy Association, Hamburg, October.
21.
London
K. W.
,
1989
, “
Comment on Dynamics of a Cantilever Beam Attached to a Moving Base
,”
AIAA Journal of Guidance, Control, and Dynamics
, Vol.
12
, pp.
284
286
.
22.
Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Inc., pp. 158–170.
23.
Meirovitch, L., 1967, Analytical Methods in Vibrations, The MacMillan Company, pp. 44.
24.
Modi
V. J.
,
1974
, “
Attitude Dynamics of Satellites with Flexible Appendages—A Brief Review
,”
Journal of Spacecraft and Rockets
, Vol.
11
, pp.
741
751
.
25.
Padilla, C. E., and von Flotow, A. H., 1989, “Non-linear Strain-Displacement Relations and Flexible Multibody Dynamics,” Proceedings of 30th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Mobile, AL, April, pp. 405–413.
26.
Peterson, L. D., 1989, “Nonlinear Finite Element Simulation of the Large Angle Motion of Flexible Bodies,” Proceedings of 30th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference, Mobile, AL, April.
27.
Ryan, R. R., and Yoo, H. H., 1989, “Element-specific Modal Formulations for Large-Displacement Multibody Dynamics,” Proceedings of the Third Annual NASA/DOD CSI Technology Conference, San Diego, CA, January 29-February 2.
28.
Schwartz, J. T., 1969, Non-linear Functional Analysis, Gordon and Breach Science Publishers, New York, p. 28.
29.
Segalman, D. J., and Dohrmann, C. R., 1990, “Dynamics of Rotating Flexible Structures by a Method of Quadratic Modes,” Sandia Report SAND90-2737, available through the National Technical Information Service, Springfield, VA.
30.
Simo
J. C.
, and
Vu-Quoc
L.
,
1986
a, “
On the Dynamics of Flexible Beams under Large Overall Motions—The Plane Case: Part I
,”
ASME Journal of Applied Mechanics
, Vol.
53
, pp.
849
854
.
31.
Simo
J. C.
, and
Vu-Quoc
L.
,
1986
b, “
On the Dynamics of Flexible Beams under Large Overall Motions—The Plane Case: Part 2
,”
ASME Journal of Applied Mechanics
, Vol.
53
, pp.
855
863
.
32.
Simo
J. C.
, and
Vu-Quoc
L.
,
1987
, “
The Role of Non-linear Theories in Transient Dynamic Analysis of Flexible Structures
,”
Journal of Sound and Vibration
, Vol.
119
, pp.
487
508
.
33.
Vigneron
F. R.
,
1975
, “
Comment on Mathematical Modeling of Spinning Elastic Bodies for Modal Analysis
,”
AIAA Journal
, Vol.
13
, pp.
126
127
.
34.
Wilansky, A., 1964, Functional Analysis, Blaisdell Publishing Company, New York, pp. 120–126.
35.
Wu
S.-C.
, and
Haug
E. J.
,
1988
, “
Geometric Non-linear Substructuring for Dynamics of Flexible Mechanical Systems
,”
International Journal for Numerical Methods in Engineering
, Vol.
26
, pp.
2211
2226
.
36.
Zeiler, T., and Buttrill, C, 1988, “Dynamic Analysis of an Unrestrained, Rotating Structure through Nonlinear Simulation,” Proceedings of 27th AIAA/ASME/ ASCE/AHS Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC, April.
This content is only available via PDF.
You do not currently have access to this content.