A solution is presented for the free vibration of very thick rectangular plates with depressions, grooves or cut-outs using three-dimensional elasticity equations in Cartesian coordinates. Simple algebraic polynomials which satisfy the boundary conditions of the plate are used as trial functions in a Ritz approach. The plate is modelled as a parallelepiped, and the inclusions are treated quite straightforwardly by subtracting the contribution to the strain and kinetic energy expressions of the volume removed, before minimizing the functional. The approach is demonstrated by considering a number of square thick plate cases, including a plate with a cylindrical groove, a shallow depression or a cylindrical cut-out.

1.
Aksu
G.
, and
Al-Kaabi
S. A.
,
1987
, “
Free Vibration Analysis of Mindlin Plates with Linearly Varying Thickness
,’
Journal of Sound and Vibration
, Vol.
119
, pp.
189
205
.
2.
Bert
C. W.
,
Reddy
J. N.
,
Chao
W. C
, and
Reddy
V. S.
,
1981
, “
Vibration of Thick Rectangular Plates of Bimodulus Composite Materials
,”
ASME Journal of Applied Mechanics
, Vol.
48
, pp.
371
376
.
3.
Chang
C. N.
, and
Chiang
F. K.
,
1988
, “
Vibration Analysis of a Thick Plate With an Interior Cut-out by a Finite Element Method
,”
Journal of Sound and Vibration
, Vol.
125
, pp.
477
486
.
4.
Dawe
D. J.
,
1978
, “
Finite Strip Models for Vibration of Mindlin Plates
,”
Journal of Sound and Vibration
, Vol.
59
, pp.
441
452
.
5.
Doong
J. L.
,
1987
, “
Vibration and Stability of an Initially Stressed Thick Plate According to a High-Order Shear Theory
,”
Journal of Sound and Vibration
, Vol.
113
, pp.
425
440
.
6.
Fromme
J. A.
, and
Leissa
A. W.
,
1970
, “
Free Vibration of the Rectangular Parallelepiped
,”
The Journal of the Acoustical Society of America
, Vol.
48
, pp.
290
298
.
7.
Gorman
D. J.
,
1978
, “
Free Vibration Analysis of the Completely Free Rectangular Plate by the Method of Superposition
,”
Journal of Sound and Vibration
, Vol.
57
, pp.
437
447
.
8.
Hutchinson
J. R.
, and
Zillmer
S. D.
,
1983
, “
Vibration of a Free Rectangular Parallelepiped
,”
ASME Journal of Applied Mechanics
, Vol.
50
, pp.
123
130
.
9.
I-DEAS, 1991, Structural Dynamics Research Corporation, Milford, OH.
10.
Leissa
A. W.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
Journal of Sound and Vibration
, Vol.
31
, pp.
257
293
.
11.
Leissa
A. W.
,
1977
, “
Recent Research in Plate Vibrations, 1973–1976: Complicating Effects
,”
The Shock and Vibration Digest
, Vol.
9
, No.
11
, pp.
21
35
.
12.
Leissa
A. W.
,
1981
, “
Plate Vibration Research, 1976–1980: Complicating Effects
,”
The Shock and Vibration Digest
, Vol.
13
, No.
10
, pp.
19
36
.
13.
Leissa
A. W.
,
1987
, “
Recent Studies in Plate Vibrations: 1981–85 Part II. Complicating Effects
,”
The Shock and Vibration Digest
, Vol.
19
, No.
3
, pp.
10
24
.
14.
Liew
K. M.
,
Xiang
Y.
, and
Kitipornchai
S.
,
1993
, “
Transverse Vibration of Thick Rectangular Plates - I. Comprehensive Sets of Boundary Conditions
,”
Computers and Structures
, Vol.
49
, No.
1
, pp.
1
29
.
15.
Lo
K. H.
,
Christensen
R. M.
, and
Wu
E. M.
,
1977
a, “
A High Order Theory of Plate Deformation. Part 1: Homogeneous Plates
,”
ASME Journal of Applied Mechanics
, Vol.
44
, pp.
663
668
.
16.
Lo
K. H.
,
Christensen
R. M.
, and
Wu
E. M.
,
1977
b, “
A High Order Theory of Plate Deformation. Part 2; Laminated Plates
,”
ASME Journal of Applied Mechanics
, Vol.
44
, pp.
669
676
.
17.
McGee
O. G.
,
1992
, “
On the Three-Dimensional Vibration Analysis of Simultaneously Skewed and Twisted Cantilevered Parallelepipeds
,”
International Journal for Numerical Methods in Engineering
, Vol.
33
, pp.
1383
1411
.
18.
Mindlin
R. D.
,
1951
, “
Influence of Rotary Inertia and Shear in Flexural Motion of Isotropic, Elastic Plates
,”
ASME Journal of Applied Mechanics
, Vol.
18
, pp.
31
38
.
19.
Mindlin
R. D.
,
Schacknow
A.
, and
Deresiewicz
H.
,
1956
, “
Flexural Vibrations of Rectangular Plates
,”
ASME Journal of Applied Mechanics
, Vol.
23
, pp.
430
436
.
20.
Misuzawa
T.
,
1993
, “
Vibration of Rectangular Mindlin Plates with Tapered Thickness by the Spline Strip Method
,”
Computers and Structures
, Vol.
46
, pp.
451
463
.
21.
Reddy
J. N.
,
1984
, “
A Simple Higher Order Theory for Laminated Composite Plates
,”
ASME Journal of Applied Mechanics
, Vol.
51
, pp.
745
752
.
22.
Reddy
J. N.
, and
Phan
N. D.
,
1985
, “
Stability and Vibration of Isotropic, Orthotropic and Laminated Plates According to a Higher-Order Shear Theory
,”
ASME Journal of Applied Mechanics
, Vol.
98
, pp.
157
170
.
23.
Roufaeil
D. L.
, and
Dawe
D. J.
,
1980
, “
Vibration Analyses of Rectangular Plates by the Finite Strip Method
,”
Computers and Structures
, Vol.
6
, pp.
37
44
.
24.
Srinivas
S.
,
Joga
A.
,
Rao
C. V.
, and
Rao
A. K.
,
1970
, “
An Exact Analysis for Vibration of Simply-Supported Homogeneous and Laminated Thick Rectangular Plates
,”
Journal of Sound and Vibration
, Vol.
12
, pp.
187
199
.
25.
Young
P. G.
, and
Dickinson
S. M.
,
1993
, “
On the Free Vibration of Thin Isotropic and Rectangularly Orthotropic Plates Involving Curved Boundaries
,”
Journal of Sound and Vibration
, Vol.
165
, pp.
511
526
.
This content is only available via PDF.
You do not currently have access to this content.