This paper examines how engineering models can be used to develop robust designs—designs that can tolerate variation. Variation is defined in terms of tolerances which bracket the expected deviation of model variables and/or parameters. Several methods for robust design are discussed. The method of transmitted variation is explained in detail and illustrated on a linkage design problem and a check valve design problem.

1.
Balling
R. J.
,
Free
J. C.
, and
Parkinson
A. R.
,
1986
, “
Consideration of Worst Case Manufacturing Tolerances in Design Optimization
,”
ASME Journal of Mechanisms, Transmissions and Automation in Design
, Vol.
108
, No.
4
, p.
438
438
, Dec.
2.
Bandler
J. W.
,
1974
, “
Optimization of Design Tolerances Using Nonlinear Programming
,”
Journal of Optimization Theory and Applications
, Vol.
14
, No.
1
, pp.
99
113
, July.
3.
Box, G., and Fung, C., 1986, “Studies in Quality Improvement: Minimizing Transmitted Variation by Parameter Design,” Report #8 of the Center for Quality Improvement, University of Wisconsin, Feb.
4.
Bjorke, O., 1989, Computer-Aided Tolerancing, ASME Press, New York.
5.
Cox, N. E., 1986, Volume 11: How to Perform Statistical Tolerance Analysis, The ASQC Basic Reference in Quality Control: Statistical Techniques, J. Cornell and S. Shapiro, eds. This reference may be obtained by writing to ASQC, 230 W. Wells Str., Milwaukee, WI, 53203.
6.
Dhingra, A. K., and Rao, S. S., 1989, “Integrated Optimal Design of Planar Mechanisms Using Fuzzy Theories,” Proceedings ASME Design Automation Conf., Montreal, Canada, DE-Vol. 19-2, Sept., p. 161.
7.
Eggert, R. J., 1989, “Probabilistic Optimization Using Successive Surrogate Probability Density Functions,” Ph.D. dissertation, Dept. of Mechanical Engr., State University of New York at Buffalo.
8.
Eggert, R. J., and Mayne, R. W., 1990, “Probabilistic Optimization Using Successive Surrogate Probability Density Functions,” Proceedings ASME 16th Design Automation Conf., Chicago, IL, DE-Vol. 23-1, Sept., p. 129.
9.
Emch, G., and Parkinson, A., 1993, “Robust Optimal Design for Worst-Case Tolerances,” ASME Journal of Mechanical Design, in press, also Proceedings of the 1993 ASME Design Automation Conf., DE-Vol. 65-1, p. 411, Albuquerque, NM, Sept. 1993.
10.
Fiacco, A. V., 1983, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press.
11.
Fox, R. L., 1971, Optimization Methods for Engineering Design, Addison-Wesley, Reading, MA.
12.
Lewis
L.
, and
Parkinson
A.
,
1994
, “
Robust Optimal Design with a Second Order Tolerance Model
,”
Research in Engineering Design.
, Vol.
6
, pp.
25
37
.
13.
Michael
W.
, and
Siddall
J. N.
,
1981
, “
The Optimization Problem with Optimal Tolerance Assignment and Full Acceptance
,”
ASME Journal of Mechanical Design
, Vol.
103
, Oct., p.
842
842
.
14.
Otto
K. N.
, and
Antonsson
E. K.
,
1993
a, “
Extensions to the Taguchi Method of Product Design
,”
ASME Journal of Mechanical Design
, Vol.
115
, March, p.
5
5
.
15.
Otto
K. N.
, and
Antonsson
E. K.
,
1993
b, “
Tuning Parameters in Engineering Design
,”
ASME Journal of Mechanical Design
, Vol.
115
, March, p.
14
14
.
16.
Parkinson
A. R.
,
Sorensen
C.
, and
Pourhassan
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME Journal of Mechanical Design
, Vol.
115
, March, p.
74
74
.
17.
Parkinson, A. R., Balling, R., and Free, J., 1992, “OptdesX: An X Window-Based Optimal Design Software System,” Proceedings of the Fourth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, p. 559, Cleveland, OH, Sept. 21–23.
18.
Parkinson, A. R., Sorensen, C., Free, J., and Canfield, B., 1990, “Tolerances and Robustness in Engineering Design Optimization,” Proc. of ASME 16th Design Automation Conf., Chicago, IL, DE-Vol. 23-1, Sept., p. 121.
19.
Peace, G. S., 1993, Taguchi Methods, A Hands-On Approach, Addison Wesley, Reading, MA.
20.
Phadke, M., 1989, Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, NJ.
21.
Ramakrishnan, B., and Rao, S. S., 1994, “An Efficient Strategy for the Robust Optimization of Large Scale Nonlinear Design Problems,” Proceedings 20th ASME Design Automation Conf., DE-Vol. 69-2, p. 25, Minneapolis, MN.
22.
Rao
S. S.
,
1987
a, “
Multi-Objective Optimization of Fuzzy Structural Systems
,”
International Journal for Numerical Methods in Engineering
, Vol.
24
, p.
1157
1157
.
23.
Rao
S. S.
,
1987
b, “
Description and Optimum Design of Fuzzy Mechanical Systems
,”
ASME Journal of Mechanisms, Transmissions, and Automation in Design
, Vol.
109
, No.
1
, March, p.
126
126
.
24.
Rao
S. S.
,
1986
, “
Automated Optimum Design of Wing Structures: A Probabilistic Approach
,”
Computers and Structures
, Vol.
24
, No.
5
, p.
799
799
.
25.
Rao
S. S.
,
1979
, “
Reliability Analysis and Design of Epicyclic Gear Trains
,”
ASME Journal of Mechanical Design
, Vol.
101
, Oct., p.
625
625
.
26.
Rhyu
J. H.
, and
Kwak
B. M.
,
1988
, “
Optimal Stochastic Design of Four-Bar Mechanisms for Tolerance and Clearance
,”
ASME Journal of Mechanisms, Transmissions, and Automation in Design
, Vol.
110
, Sept., p.
225
225
.
27.
Siddall, J. N., 1983, Probabilistic Engineering Design, Principles and Applications, Marcel Dekker, Inc. New York.
28.
Sobieski
J. J.
,
Barthelemy
J.
, and
Riley
K.
,
1982
, “
Sensitivity of Optimum Solutions to Problem Parameters
,”
AIAA J.
, Vol.
20
, No.
9
, p.
1291
1291
.
29.
Taguchi, G., Elsaed, E., and Hsiang, T., 1989, Quality Engineering in Production Systems, McGraw-Hill.
30.
Webb, S., 1994, “The Mathematical Properties and Efficient Optimization of the Linear Variance Function,” M.S. Thesis, Brigham Young University, Provo, UT.
31.
Wets, R. J. B., 1989, “Stochastic Programming,” Handbook for Operations Research and Management Sciences, Vol. 1, Elsevier Science Publishers, pp. 573–629.
32.
Wilde, D. J., 1992, “Product Quality in Optimization Models,” Proceedings, ASME Design Theory and Methodology Conf., Scottsdale, AZ, DE-Vol. 42, p. 237.
33.
Wood
K. L.
, and
Antonsson
E. K.
,
1990
, “
Modeling Imprecision and Uncertainty in Preliminary Engineering Design
,”
Mechanism and Machine Theory
, Vol.
25
, No.
3
, p.
305
305
.
34.
Wood
K. L.
, and
Antonsson
E. K.
,
1989
, “
Computations with Imprecise Parameters in Engineering Design: Background and Theory
,”
ASME Journal of Mechanisms, Transmissions, and Automation in Design
, Vol.
111
, Dec., p.
616
616
.
35.
Yu, J. C., and Ishii, K., 1994, “Robust Design by Matching the Design with Manufacturing Variation Patterns,” Proceedings 20th ASME Design Automation Conf., DE-Vol. 69-2, p. 7, Minneapolis, MN.
This content is only available via PDF.
You do not currently have access to this content.