The influence of random vibration on the design of mechanical components has been considered within the framework of the linear theory of small oscillations. However, in some important cases this theory is inadequate and fails to predict some complex response characteristics that have been observed experimentally and which can only be predicted by nonlinear analyses. This paper describes some recent developments in the theory of nonlinear random vibration based on Markov methods and related problems in the design of dynamical systems. Research efforts have been focused on stability/bifurcation conditions, response statistics and reliability problems. Significant progress has been made in developing new analytical methods and conducting experimental testing. These developments have helped to resolve some controversies, and to enhance our understanding of difficult issues. Experimental and numerical simulations have revealed new phenomena that were not predicted analytically. These include on-off intermittency, snap-through phenomena, and the dependence of the response bandwidth on the excitation level. The main results of studying the responses of nonlinear single-and two-degree-of-freedom systems to random excitations obtained by the author and others are discussed in this paper.

1.
Ariaratnam, S. T., 1981, “Bifurcation in Nonlinear Stochastic Systems,” New Approaches in Nonlinear Problems in Dynamics, P. Holmes, ed., SIAM Philadelphia, pp. 470–474.
2.
Arnold, L., and Wihstutz, V., eds., 1986, Liapunov Exponents, Lecture Notes in Mathematics, Vol. 1186, Springer-Verlag, New York.
3.
Bogdanoff, J. L., and Kozin, F., 1985, Probabilistic Models of Cumulative Damage, Wiley-Interscience, New York.
4.
Bolotin, V. V., 1989, Prediction of Service Life for Machines and Structures, ASME Press, New York.
5.
Brissaud
A.
, and
Frisch
,
1974
, “
Solving Linear Stochastic Differential Equations
,”
J. Math. Phys.
, Vol.
15
, No.
5
, pp.
524
534
.
6.
Cai
G. Q.
, and
Lin
Y. K.
,
1988
, “
On Exact Stationary Solutions of Equivalent Nonlinear Stochastic Systems
,”
Int. J. Nonlinear Mech.
, Vol.
23
, No.
4
, pp.
315
325
.
7.
Caughey
T. K.
,
1960
, “
Random Excitation of a Loaded Nonlinear String
,”
ASME Journal of Applied Mechanics
, Vol.
27
, pp.
575
578
.
8.
Caughey
T. K.
,
1963
, “
Equivalent Linearization Technique
,”
J. Acoust. Soc. Amer.
, Vol.
35
, pp.
1706
1711
.
9.
Caughey
T. K.
,
1971
, “
Nonlinear Theory of Random Vibrations
,”
Advances in Applied Mechanics
, Vol.
11
, pp.
209
253
.
10.
Caughey
T. K.
,
1986
, “
On the Response of Nonlinear Oscillators to Stochastic Excitation
,”
Probabilistic Engineering Mechanics
, Vol.
1
, No.
1
, pp.
2
4
.
11.
Caughey
T. K.
, and
Ma
F.
,
1982
, “
The Steady State Response of a Class of Dynamical System to Stochastic Excitation
,”
ASME Journal of Applied Mechanics
, Vol.
49
, pp.
622
632
.
12.
Caughey
T. K.
, and
Ma
F.
,
1983
, “
The Exact Steady State Solution of a Class of Nonlinear Stochastic Systems
,”
Int. J. Nonlinear Mechanics
, Vol.
17
, No.
3
, pp.
137
142
.
13.
Chang, W. K., Ibrahim, R. A., and Afaneh, A., 1994, “Planar and Non-Planar Nonlinear Dynamics of Suspended Cables under Random In-Plane Loading,” ASME WAM Symposium on Nonlinear Dynamics and Stochastic Mechanics.
14.
Clarkson, B. L., 1994, “Review of Sonic Fatigue Technology,” NASA CR 4587, Langley Research Center, Hampton, Virginia.
15.
Crandall
S. H.
,
1963
, “
Perturbation Technique for Random Vibration of Nonlinear Systems
,”
J. Acoust. Soc. Amer.
, Vol.
35
, No.
11
, pp.
1700
1705
.
16.
Davies
H. G.
, and
Liu
Q.
,
1990
, “
The Response Envelop Probability Density Function of a Duffing Oscillator with Random Narrow Band Excitation
,”
J. Sound Vib.
, Vol.
139
, pp.
1
8
.
17.
Davies
H. G.
, and
Liu
Q.
,
1992
, “
On the Narrow Band Random Response Distribution Function of a Non-Linear Oscillator
,”
Int. J. Non-Linear Mech.
, Vol.
27
, No.
5
, pp.
805
816
.
18.
Davies
H. G.
, and
Nandlall
D.
,
1986
, “
Phase Plane for Narrow Band Random Excitation of a Duffing Oscillator
,”
J. Sound Vib.
, Vol.
104
, No.
2
, pp.
277
283
.
19.
Davies
H. G.
, and
Rajan
S.
,
1988
, “
Random Superharmonic and Subharmonic Response: Multiple Time Scaling of a Duffing Oscillator
,”
J. Sound Vib.
, Vol.
126
, No.
2
, pp.
195
208
.
20.
Dimentberg
M. F.
,
1971
, “
Oscillations of a System with Nonlinear Cubic Characteristics under Narrow Band Random Excitation
,”
Mechanics of Solids
, Vol.
6
, pp.
142
146
.
21.
Di Paola, M., 1993, “Stochastic Differential Calculus,” Chapter 2 in Dynamic Motion: Chaotic and Stochastic Behavior, F. Casciati, ed., CISM Courses and Lectures, No. 340, pp. 29–92, Springer-Verlag, New York.
22.
Di Paola
M.
, and
Falsone
G.
,
1993
, “
Stochastic Dynamics of Nonlinear Systems Driven by Non-Normal Delta-Correlated Processes
,”
ASME Journal of Applied Mechanics
, Vol.
60
, pp.
141
148
.
23.
Fang
T.
, and
Dowell
E. H.
,
1987
, “
Numerical Simulations of Jump Phenomena in Stable Duffing Systems
,”
Int. J. Non-Linear Mechanics
, Vol.
22
, No.
3
, pp.
267
274
.
24.
Gray
A. H.
, and
Caughey
T. K.
,
1965
, “
A Controversy in Problems Involving Random Parametric Excitation
,”
J. Math. Phys.
, Vol.
44
, pp.
288
295
.
25.
Grebogi
C.
,
Ott
E.
, and
Yorke
J. A.
,
1982
, “
Chaotic Attractors in Crisis
,”
Physical Review Letters
, Vol.
48
, No.
22
, pp.
1507
1510
.
26.
Grebogi
C.
,
Ott
E.
,
Romeiras
F.
, and
Yorke
J. A.
,
1987
, “
Critical Exponents for Crisis-Induced Intermittency
,”
Physical Review A
, Vol.
36
, pp.
5365
5380
.
27.
Hammel, S. M., and Platt, N., 1994, “From Intermittency to Stability Extended Turbulence,” ONR Workshop on Reliability and Nonlinear Vibration of Ocean Systems, Arlington, July 18–19.
28.
Heagy
J. F.
,
Platt
N.
, and
Hammel
S. M.
,
1994
, “
Characterization of On-Off Intermittency
,”
Physical Review E
, Vol.
49
, No.
2
, pp.
1140
1150
.
29.
Ibrahim, R. A., 1985, Parametric Random Vibration, John Wiley, New York.
30.
Ibrahim
R. A.
, and
Heinrich
,
1988
, “
Experimental Investigation of Liquid Sloshing under Parametric Random Excitation
,”
ASME J. Appl. Mech
, Vol.
55
, pp.
467
473
.
31.
Ibrahim
R. A.
, and
Heo
H.
,
1986
, “
Autoparametric Vibration of Coupled Beams under Random Support Motion
,”
ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design
, Vol.
108
, No.
4
, pp.
421
426
.
32.
Ibrahim
R. A.
,
Lee
B. H.
, and
Afaneh
A. H.
,
1993
, “
Structural Modal Multifurcation with Internal Resonance, Part II: Stochastic Approach
,”
ASME Journal of Vibration and Acoustics
, Vol.
115
, No.
2
, pp.
193
201
.
33.
Ibrahim
R. A.
, and
Li
W.
,
1988
, “
Structural Modal Interaction with Combination Internal Resonance under Wide Band Random Excitation
,”
J. Sound Vib.
, Vol.
123
, No.
2
, pp.
473
495
.
34.
Ibrahim
R. A.
, and
Roberts
J. W.
,
1976
, “
Broad Band Random Excitation of a Two Degree-of-Freedom System with Autoparametric Coupling
,”
J. Sound Vib.
, Vol.
44
, No.
3
, pp.
335
348
.
35.
Ibrahim
R. A.
, and
Roberts
J. W.
,
1977
, “
Stochastic Stability of the Stationary Response of a System with Autoparametric Coupling
,”
Zeitschrift fur Ang. Math. und Mech.
, Vol.
57
, No.
9
, pp.
643
649
.
36.
Ibrahim
R. A.
, and
Soundararajan
A.
,
1983
, “
Nonlinear Parametric Liquid Sloshing under Wide Band Random Excitation
,”
J. Sound Vib.
, Vol.
91
, pp.
119
134
.
37.
Ibrahim
R. A.
, and
Soundararajan
A.
,
1985
, “
An Improved Approach for Random Parametric Response of Dynamic Systems with Nonlinear Inertia
,”
Int. J. Nonlin. Mech.
, Vol.
20
, pp.
309
344
.
38.
Ibrahim
R. A.
,
Soundararajan
A.
, and
Heo
H.
,
1985
, “
Stochastic Response of Nonlinear Dynamic Systems Based on a Non-Gaussian Closure
,”
ASME Journal of Applied Mechanics
, Vol.
52
, No.
4
, pp.
965
970
.
39.
Ibrahim
R. A.
, and
Sullivan
D. G.
,
1990
, “
Experimental Investigation of Structural Autoparametric Interaction under Random Excitation
,”
AIAA Journal
, Vol.
28
, No.
2
, pp.
338
344
.
40.
Ibrahim
R. A.
,
Yoon
Y. J.
, and
Evans
M. G.
,
1990
, “
Random Excitation of Nonlinear Coupled Oscillators
,”
Nonlinear Dynamics
, Vol.
1
, No.
1
, pp.
91
116
.
41.
Ibrahim, R. A., and Yoon, Y. J., 1993, “Response Statistics of Nonlinear Hamiltonian Systems to Parametric Filtered White Noise,” Int. Conference on Nonlinear Dynamics and Stochastic Mechanics, University of Waterloo, August 29-September 1.
42.
Ilin
A. M.
, and
Khas’miniskii
R. Z.
,
1964
, “
On Equations of Brownian Motion
,”
Theory Probab. Appl.
, Vol.
9
, pp.
421
444
.
43.
Iyengar
R. N.
,
1986
, “
Stochastic Response and Stability of the Duffing Oscillator under Narrow Band Excitation
,”
J. Sound Vib.
, Vol.
126
, pp.
255
263
.
44.
Iyengar
R. N.
,
1988
, “
Higher Order Linearization in Non-Linear Random Vibration
,”
Int. J. Non-Linear Mech.
, Vol.
23
, pp.
385
391
.
45.
Iyengar
R. N.
,
1989
, “
Response of Nonlinear Systems to Narrow Band Excitation
,”
Structural Safety
, Vol.
6
, pp.
177
185
.
46.
Iyengar, R. N., 1992,. “Approximate Analysis of Nonlinear Systems under Narrow Band Random Inputs,” Nonlinear Stochastic Mechanics, IUTAM Symposium Turin, N. Bellomo and F. Casciati, eds., Springer-Verlag.
47.
Kantorovich, L. V., and Krylov, V. I., 1958, Approximate Methods of Higher Analysis, Nordhoff, Netherlands.
48.
Kapitaniak
T.
,
1985
, “
Stochastic Response with Bifurcation to Nonlinear Duffing’s Oscillators
,”
J. Sound Vib.
, Vol.
102
, No.
3
, pp.
440
441
.
49.
Khasminskii, R. Z., 1980, Stochastic Stability of Differential Equations, Sijthoff Noordhoff, The Netherlands.
50.
Koliopulos
P. K.
, and
Bishop
S. R.
,
1993
, “
Quasi-Harmonic Analysis of the Behavior of Hardening Duffing Oscillator Subjected to Filtered White Noise
,”
Nonlinear Dynamics
, Vol.
4
, pp.
279
288
.
51.
Koliopulos
P. K.
, and
Langley
R. S.
,
1993
, “
Improved Stability Analysis of the Response of a Duffing Oscillator under Filtered White Noise
,”
Int. J. Non-Linear Mech.
, Vol.
28
, No.
2
, pp.
145
155
.
52.
Kozin, F., and Sugimoto, S., 1977, “Decision Criteria for Stability of Stochastic Systems from Observed Data,” Stochastic Problems in Dynamics, B. L. Clarkson, ed., Pitman, London, pp. 8–35.
53.
Kushner, H., 1967, Stochastic Stability and Control, Academic Press, New York.
54.
Kushner
H. J.
,
1969
, “
The Cauchy Problem for a Class of Degenerate Parabolic Equations and Asymptotic Properties of the Related Diffusion Processes
,”
J. Diff. Equations
, Vol.
6
, No.
2
, pp.
209
231
.
55.
Lee
B. H.
, and
Ibrahim
R. A.
,
1994
, “
Stochastic Bifurcation in Nonlinear Structural Systems Near 1:1 Internal Resonance
,”
Probabilistic Engineering Mechanics
, Vol.
9
, pp.
23
32
.
56.
Lennox
W. C.
, and
Kuak
Y. C.
,
1976
, “
Narrow Band Excitation of a Nonlinear Oscillator
,”
ASME Journal of Applied Mechanics
, Vol.
43
, pp.
340
344
.
57.
Li
W.
, and
Ibrahim
R. A.
,
1989
, “
Principal Internal Resonances in 3-DOF Systems Subjected to Wide-Band Random Excitation
,”
J. Sound Vib.
, Vol.
130
, No.
2
, pp.
305
321
.
58.
Li
W.
, and
Ibrahim
R. A.
,
1990
, “
Monte Carlo Simulation of Coupled Nonlinear Oscillators under Random Excitations
,”
ASME Journal of Applied Mechanics
, Vol.
57
, pp.
1097
1099
.
59.
Lin
Y. K.
, and
Cai
G. Q.
,
1988
, “
Exact Stationary Response Solution for Second Order Nonlinear Systems under Parametric and External White-Noise Excitations: Part II
,”
ASME Journal of Applied Mechanics
, Vol.
55
, pp.
702
705
.
60.
Lyon
R. H.
,
1960
, “
Response of a Nonlinear String to Random Excitation
,”
J. Acoust. Soc. Amer.
, Vol.
28
, pp.
953
960
.
61.
Lyon
R. H.
,
1965
, “
Response of Strings to Random Noise Fields
,”
J. Acoust. Soc. Amer.
, Vol.
32
, pp.
391
398
.
62.
Lyon
R. H.
,
Heckl
M.
, and
Hazelgrove
C. B.
,
1961
, “
Response of Hard-Spring Oscillator to Narrow Band Excitation
,”
The J. Acoustical Soc. Amer.
, Vol.
33
, pp.
1404
1411
.
63.
Mei, C., and Wentz, K. R., 1982, “Analytical and Experimental Nonlinear Response of Rectangular Panels to Acoustic Excitation,” AIAA 23rd Structures, Structural Dynamics and Materials Conference, New Orleans, LA, pp. 514–520.
64.
Minorsky, N., 1962, Nonlinear Oscillation, Van Nostrand, New York.
65.
Moshchuk
N. K.
, and
Sinitsyn
I. N.
,
1991
, “
On Stationary Distributions in Nonlinear Stochastic Differential System
,”
Quarterly J. Inter. Appl. Math.
, Vol.
44
, No.
4
, pp.
571
579
.
66.
Moyer, E. T., Jr., 1988, “Time Domain Simulation of the Response of Geometrically Nonlinear Panels Subjected to Random Loading,” Proc. 29th AIAA Structures, Structural Dynamics and Materials Conference, Paper No. 88-2236, pp. 210–218.
67.
Muscolino, G., 1993, “Response of Linear and Nonlinear Structural Systems under Gaussian and Non-Gaussian Filtered Input,” Chapter 6 in Dynamic Motion: Chaotic and Stochastic Behavior, F. Casciati, ed., CISM Courses and Lectures, Springer-Verlag, New York, No. 340, pp. 203–299.
68.
Nayfeh
A. H.
, and
Serhan
S. J.
,
1991
, “
Response Moments of Dynamic Systems with Modal Interactions
,”
J. Sound Vib.
, Vol.
151
, No.
2
, pp.
291
310
.
69.
Newland
D. E.
,
1965
, “
Energy Sharing in Random Vibration of Nonlinearly Coupled Modes
,”
J. Inst. Math. Appl
, Vol.
1
, No.
3
, pp.
199
207
.
70.
Pinsky
M.
,
1974
, “
Stochastic Stability and the Dirichlet Problem
,”
Comm. Pure Appl. Math.
, Vol.
27
, pp.
311
350
.
71.
Platt
N.
,
Spiegel
E. A.
, and
Tresser
C.
,
1993
, “
On-Off Intermittency: A Mechanism for Bursting
,”
Physical Review Letters
, Vol.
70
, No.
3
, pp.
279
282
.
72.
Platt
N.
,
Hammel
S. M.
, and
Heagy
J. F.
,
1994
, “
Effects of Additive Noise on On-Off Intermittency
,”
Physical Review Letters
, Vol.
72
, No.
22
, pp.
3498
3501
.
73.
Pomeau
Y.
, and
Manneville
P.
,
1980
, “
Intermittent Transition to Turbulence in Dissipative Dynamical Systems
,”
Commun. Math. Phys.
, Vol.
74
, pp.
189
197
.
74.
Red-Horse
J. R.
, and
Spanos
P. D.
,
1992
, “
A Generalization to Stochastic Averaging in Random Vibration
,”
Int. J. Nonlinear Mech.
, Vol.
27
, No.
1
, pp.
85
101
.
75.
Reinhall
P. G.
, and
Miles
R. N.
,
1989
, “
Effect of Damping and Stiffness on the Random Vibration of Nonlinear Periodic Plates
,”
J. Sound and Vibration
, Vol.
132
, No.
1
, pp.
33
42
.
76.
Roberts
J. B.
,
1991
, “
Multiple Solutions Generated by Statistical Linearization and their Physical Significance
,”
Int. J. Non-Linear Mech.
, Vol.
26
, pp.
945
959
.
77.
Roberts
J. B.
, and
Spanos
P-T. D.
,
1986
, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Intl. J. Non-Linear Mech.
, Vol.
21
, No.
2
, pp.
111
134
.
78.
Roberts, J. B., and Spanos, P-T. D., 1990, Random Vibrations and Statistical Linearization, John Wiley & Sons, New York.
79.
Roberts
J. W.
,
1980
, “
Random Excitation of a Vibratory System with Autoparametric Interaction
,”
J. Sound Vib.
, Vol.
69
, No.
1
, pp.
101
116
.
80.
Roy
R. V.
,
1994
, “
Stochastic Averaging of Oscillators Excited by Colored Gaussian Processes
,”
Int. J. Nonlinear Mech.
, Vol.
29
, No.
4
, pp.
463
475
.
81.
Schetzen, M., 1980, The Volterra and Wiener Theories of Nonlinear Systems, John Wiley, New York.
82.
Schmidt, G., 1977a, “Probability Densities of Parametrically Excited Random Vibration,” Stochastic Problems in Dynamics, B. L. Clarkson, ed., Pitman, London, pp. 197–213.
83.
Schmidt, G., 1977b, “Vibration Mechanical Systems with Random Parametric Excitation, in Theoretical and Applied Mechanics, W. T. Koiter, ed., North-Halland, Amsterdam, pp. 439–450.
84.
Sobczyk, K., and Spencer, B., 1992, Random Fatigue, Academic Press, New York.
85.
Soize
C.
,
1991
, “
Exact Stationary Response of Multi-Dimensional Nonlinear Hamiltonian Dynamical Systems Under Parametric and External Stochastic Excitations
,”
J. Sound Vib.
, Vol.
149
, No.
1
, pp.
1
24
.
86.
Soundararajan
A.
, and
Ibrahim
R. A.
,
1988
, “
Parametric and Autoparametric Vibrations of an Elevated Water Tower, Part III: Random Response
,”
J. Sound Vib.
, Vol.
121
, No.
3
, pp.
445
462
.
87.
Spanos
P. D.
,
1981
, “
Stochastic Linearization in Structural Dynamics
,”
Appl. Mech. Rev.
, Vol.
34
, pp.
1
8
.
88.
Sun
J. Q.
, and
Hsu
C. S.
,
1987
, “
Cumulant-Neglect Closure Method for Nonlinear Systems under Parametric Excitation
,”
ASME Journal of Applied Mechanics
, Vol.
54
, pp.
649
655
.
89.
Tagata
G.
,
1978
, “
Analysis of a Randomly Excited Nonlinear Stretching String
,”
J. Sound Vib.
, Vol.
58
, No.
1
, pp.
95
107
.
90.
Tagata
G.
,
1989
, “
Nonlinear String Random Vibration
,”
J. Sound Vib.
, Vol.
129
, No.
3
, pp.
361
384
.
91.
Townsond, A. A., 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge.
92.
Yong
Y.
, and
Lin
Y. K.
,
1987
, “
Exact Stationary Response Solution for Second Order Nonlinear Systems Under Parametric and External White-Noise Excitations
,”
ASME Journal of Applied Mechanics
, Vol.
54
, pp.
414
418
.
This content is only available via PDF.
You do not currently have access to this content.