The information dimension, D(0), of attractors associated with orthogonal turning is determined from experimental tool-workpiece relative acceleration data. Let E≡dimension of a delay coordinate space, n≡number of generic data points and m≡ number of reference points on the attractor. It is shown that properties of D(0) as a function of E, denoted by D(0):E, are unchanging, invariant, over large intervals of n and m. The qualitative properties of D(0):E discriminate between various cutting cases. This discrimination can be based on relatively small data sets. The computation of D(0) is shown to be robust in the sense that estimated values of D(0) are invariant or slowly varying over intervals of n and m.

1.
Aleksic´
Z.
,
1991
, “
Estimating the Embedding Dimension
,”
Physica D
, Vol.
52
, pp.
361
368
.
2.
Badii
P.
, and
Politi
A.
,
1985
, “
Statistical Description of Chaotic Attractors: The Dimension Function
,”
Journal of Statistical Physics
, Vol.
40
, No.
516
, pp.
725
750
.
3.
Berger, B. S., Minis, I., and Rokni, M., 1991, “The Dimension of Attractors Associated With Metal Cutting Dynamics,” Sensors, Controls and Quality Issues in Manufacturing, Winter Annual Meeting of the ASME, Atlanta, GA, PED-Vol. 55, pp. 333–343.
4.
Berger, B. S., Rokni, M., and Minis, I., 1993, “Complex Dynamics of Metal Cutting,” Quarterly Journal of Applied Mathematics (to appear).
5.
Broggi, G., 1988(a), “Numerical Characterization of Experimental Chaotic Signals,” PhD Dissertation, Institut fur Theoretische Physik der Universitat Zurich, Zurich, Switzerland.
6.
Broggi
G.
,
1988
(b), “
Evaluation of Dimensions and Entropies of Chaotic Systems
,”
Journal of the Optical Society of America B
, Vol.
5
, No.
5
, pp.
1020
1028
.
7.
Casdagli
M.
,
Eubank
S.
,
Farmer
J. D.
, and
Gibson
J.
,
1991
, “
State Space Reconstruction in the Presence of Noise
,”
Physica D
, Vol.
51
, pp.
52
98
.
8.
Eckmann
J. P.
, and
Ruelle
D.
,
1985
, “
Ergodic Theory of Chaos and Strange Attractors
,”
Review of Modern Physics
, Vol.
57
, No.
3
, Part 1, pp.
617
656
.
9.
Farmer, J. D., 1981, “Order Within Chaos,” PhD Dissertation, University of California at Santa Cruz, Santa Cruz, California.
10.
Farmer
J. D.
,
Ott
B.
, and
Yorke
J. A.
,
1983
, “
The Dimension of Chaotic Attractors
,”
Physica D
, Vol.
7
, pp.
153
180
.
11.
Farmer
J. D.
, and
Sidorowich
J. J.
,
1991
, “
Optimal Shadowing and Noise Reduction
,”
Physica D
, Vol.
47
, pp.
373
392
.
12.
Fraser
A. M.
, and
Swinney
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Physical Review A
, Vol.
33
, No.
2
, pp.
1134
1140
.
13.
Grabec
I.
,
1986
, “
Chaos Generated by the Cutting Process
,”
Physics Letters
, Vol.
117
, pp.
384
386
.
14.
Grabec
I.
,
1988
, “
Chaotic Dynamics of the Cutting Process
,”
International Journal of Machine Tools and Manufacturing
, Vol.
28
, pp.
275
280
.
15.
Grassberger
P.
, and
Procaccia
I.
,
1983
, “
Measuring the Strangeness of Strange Attractors
,”
Physica D
, Vol.
9
, pp.
189
208
.
16.
Guckenheimer, J., and Holmes, P., 1983, “Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,” Springer-Verlag.
17.
Hanna
N. J.
, and
Tobias
S. A.
,
1969
, “
The Nonlinear Dynamic Behavior of a Machine Structure
,”
International Journal of Machine Tool Design and Research
, Vol.
9
, pp.
293
307
.
18.
Kim
K. J.
,
Eman
E. F.
, and
Wu
S. M.
,
1984
, “
Identification of Natural Frequencies and Damping Ratios of Machine Tool Structures by the Dynamic Data System Approach
,”
International Journal of Machine Tool Design and Research
, Vol.
24
, pp.
161
170
.
19.
Klamecki
B. E.
,
1989
, “
On the Effects of Turning Process Asymmetry on Process Dynamics
,”
ASME Journal of Engineering for Industry
, Vol.
III
, pp.
193
198
.
20.
Koenigsberger, I., and Tlusty, J., 1971, Structure of Machine Tools, Pergamon Press.
21.
Kostelich
E. J.
, and
Swinney
H. L.
,
1989
, “
Practical Considerations in Estimating Dimension From Time Series Data
,”
Physica Scripta
, Vol.
40
, pp.
436
441
.
22.
Lin
J. W.
, and
Weng
C. I.
,
1990
, “
A Nonlinear Dynamic Model of Cutting
,”
International Journal of Machine Tools and Manufacturing
, Vol.
30
, pp.
53
64
.
23.
Mandelbrot, B. B., 1993, The Fractal Geometry of Nature, W. H. Freeman and Co., New York.
24.
Marteau
P. F.
, and
Abarbanel
H. D. I.
,
1991
, “
Noise Reduction in Chaotic Time Series Using Scaled Probabilistic Methods
,”
Journal of Nonlinear Science
, Vol.
1
, pp.
313
343
.
25.
Minis, I., 1988, “Prediction of Machine Tool Chatter in Turning,” PhD Dissertation, University of Maryland, College Park, MD.
26.
Minis
I.
,
Magrab
E.
, and
Pandelidis
I.
,
1990
, “
Improved Methods for the Prediction of Chatter in Turning, Part 1: Determination of the Structural Response Parameters
,”
ASME Journal of Engineering for Industry
, Vol.
112
, pp.
12
20
.
27.
Sauer, T., Yorke, J., and Casdagli, M., 1991, “Embedology,” Technical Report, Dept. of Math. Sciences, George Mason University, Fairfax, VA 22030.
28.
Smith
L. A.
,
Fournier
J. D.
, and
Spiegel
E. A.
,
1986
, “
Lacunarity and Intermittency in Fluid Turbulence
,”
Physics Letters
, Vol.
114A
, No.
8, 9
, pp.
465
468
.
29.
Takens, F., 1981, “Detecting Strange Attractors in Turbulence,” Lecture Notes in Mathematics, No. 898, Springer-Verlag.
30.
Tlusty
J.
,
1978
, “
Analysis of the State of Research in Cutting Dynamics
,”
CIRP Annals
, Vol.
27
, pp.
583
589
.
31.
Van De Water
W.
, and
Schram
P.
,
1989
, “
Oscillatory Scaling Functions of Near-Neighbor Distances in Fractal Sets
,”
Physics Letters A
, Vol.
140
, No.
4
, pp.
173
178
.
32.
Week, M., 1985, Handbook of Machine Tools, Vol. 4, John Wiley, New York.
33.
Wu
D. W.
, and
Liu
C. R.
,
1985
, “
An Analytical Model of Cutting Dynamics
,” Parts 1 and 2,
ASME Journal of Engineering for Industry
, Vol.
107
, pp.
107
118
.
34.
Wu
D. W.
,
1989
, “
A New Approach to Formulating the Transfer Function for Dynamic Cutting Processes
,”
ASME Journal of Engineering for Industry
, Vol.
III
, pp.
37
47
.
This content is only available via PDF.
You do not currently have access to this content.