A finite element (FE)-based procedure is presented for the solution directly in the time-domain of transient problems involving axisymmetric three-dimensional structures submerged in an infinite acoustic fluid. The central component of the procedure is a novel impedance element that is used to render the computational domain finite. The element is local in both time and space, and is completely defined by a pair of stiffness and damping matrices. It is shown that the exterior structural acoustics problem can be solved accurately and efficiently by using the same tools as those used for interior problems. The method is illustrated with numerical results for a submerged shell.

1.
Barry
A.
,
Bielak
J.
, and
MacCamy
R. C.
,
1988
, “
On Absorbing Boundary Conditions for Wave Propagation
,”
J. Comput. Phys.
, Vol.
79
, pp.
449
468
.
2.
Bayliss
A.
, and
Turkel
E.
,
1980
, “
Radiation Boundary Conditions for Wave-Like Equations
,”
Comm. Pure Appl. Math.
, Vol.
33
, No.
6
, pp.
707
725
.
3.
Chertock
G.
,
1970
, “
Transient Flexural Vibrations of Ship-Like Structures Exposed to Underwater Explosion
,”
J. Acoust. Soc. Am.
, Vol.
48
, No.
1
, pp.
170
180
.
4.
Engquist
B.
, and
Majda
A.
,
1979
, “
Radiation Boundary Conditions for Acoustic and Elastic Wave Calculations
,”
Comm. Pure Appl. Math.
, Vol.
32
, No.
3
, pp.
313
357
.
5.
Everstine
G. C.
,
1981
, “
A Symmetric Potential Formulation for Fluid-Structure Interaction
,”
J. Sound and Vib.
, Vol.
79
, No.
1
, pp.
157
160
.
6.
Geers
T. L.
,
1971
, “
Residual Potential and Approximate Methods for Three-Dimensional Fluid-Structure Interaction Problems
,”
J. Acoust. Soc. Am.
, Vol.
49
, No.
5
, pp.
1505
1510
.
7.
Geers
T. L.
,
1978
, “
Doubly Asymptotic Approximation for Transient Motions of Submerged Structures
,”
J. Acoust. Soc. Am.
, Vol.
64
, No.
5
, pp.
1500
1508
.
8.
Givoli
D.
,
1991
, “
Non-reflecting Boundary Conditions: A Review
,”
J. Comput. Phys.
, Vol.
94
, No.
1
, pp.
1
29
.
9.
Jeans
R. A.
, and
Mathews
I. C.
,
1990
, “
Solution of Fluid-Structure Interaction Problems Using a Coupled Finite Element and Variational Boundary Element Technique
,”
J. Acoust. Soc. Am.
, Vol.
88
, No.
5
, pp.
2459
2466
.
10.
Junger, M. C., and Feit, D., 1972, Sound, Structures, and Their Interaction, MIT Press, Cambridge, MA.
11.
Kallivokas
L. F.
,
Bielak
J.
, and
MacCamy
R. C.
,
1991
, “
Symmetric Local Absorbing Boundaries in Time and Space
,”
J. Eng. Mech.
, Vol.
117
, No.
9
, pp.
2027
2048
.
12.
Kallivokas
L. F.
, and
Bielak
J.
,
1993
, “
Time-Domain Analysis of Transient Structural Acoustics Problems Based on the FEM and a Novel Absorbing Boundary Element
,”
J. Acoust. Soc. Am.
, Vol.
94
, No.
6
, pp.
3480
3492
.
13.
Mindlin
R. D.
, and
Bleich
H. H.
,
1953
, “
Response of an Elastic Cylindrical Shell to a Transverse, Step Shock Wave
,”
J. Appl. Mech.
, Vol.
20
, pp.
189
195
.
14.
Pinsky
P. M.
,
Thompson
L. L.
, and
Abboud
N. N.
,
1992
, “
Local High-Order Radiation Boundary Conditions for the Two-Dimcnsional Time-Dependent Structural Acoustics Problem
,”
J. Acoust. Soc. Am.
, Vol.
91
, No.
3
, pp.
1320
1335
.
15.
Pinsky
P. M.
, and
Abboud
N. N.
,
1990
, “
Transient Finite Element Analysis of the Exterior Structural Acoustics Problem
,”
ASME JOURNAL OF VIBRATION AND ACOUSTICS
, Vol.
112
, pp.
245
256
.
16.
Pinsky
P. M.
, and
Abboud
N. N.
,
1991
, “
Finite Element Solution of the Transient Exterior Structural Acoustics Problem Based on the Use of Radially Asymptotic Boundary Operators
,”
Comput. Methods Appl. Mech. Eng.
, Vol.
85
, pp.
311
348
.
17.
Ricker, N. H., 1977, Transient Waves in Visco-Elastic Media, Elsevier Scientific Publishing Company, Amsterdam, Netherlands.
This content is only available via PDF.
You do not currently have access to this content.