Treated in this paper is the free-flexural vibration analysis of symmetrically laminated thin circular plates. The total energy functional for the laminated plates is formulated where the pb-2 Ritz method is applied for the solution. The assumed displacement is defined as the product of (1) a two-dimensional complete polynomial function and (2) a basic boundary function. The simplicity and accuracy of the numerical procedure will be demonstrated by solving some plate examples. In the present study, the effects of material properties, number of layers and fiber stacking sequences upon the vibration frequency parameters are investigated. Selected mode shapes by means of contour plots for several 16-ply laminated plates with different fiber stacking sequences and composite materials are presented. This study may provide valuable information for researchers and engineers in design applications. In addition, the present solution plays an important role in increasing the existing data base for future references.

This content is only available via PDF.
You do not currently have access to this content.