In the determination of the first eigenmodes of continuous linear elastic systems the Rayleigh-Ritz method is often used. It is also very useful in the discretization of the elastic members of multibody systems undergoing large nonlinear motions. Recently the concept of quasi-comparison functions has been introduced for the Rayleigh-Ritz discretization in self-adjoint eigenvalue problems, where it may lead to a considerable improvement of the convergence when compared with other classes of admissible functions. In this paper it is shown with a simple example that a similar phenomenon also holds for nonself-adjoint problems. Since the exact solutions are known, precise information on the errors can be given.

This content is only available via PDF.
You do not currently have access to this content.