The GHM Method provides viscoelastic finite elements derived from the commonly used elastic finite elements. Moreover, these GHM elements are used directly and conveniently in second-order structural models jut like their elastic counterparts. The forms of the GHM element matrices preserve the definiteness properties usually associated with finite element matrices—namely, the mass matrix is positive definite, the stiffness matrix is nonnegative definite, and the damping matrix is positive semi-definite. In the Laplace domain, material properties are modeled phenomenologically as a sum of second-order rational functions dubbed mini-oscillator terms. Developed originally as a tool for the analysis of damping in large flexible space structures, the GHM method is applicable to any structure which incorporates viscoelastic materials.

This content is only available via PDF.
You do not currently have access to this content.