Experimental observation has shown that the most significant noise source in roller chain drives is from the impacts between the chain and the sprocket during their meshing process. Despite its importance, studies have not been made to thoroughly analyze the chain/sprocket impact dynamics and their interaction with the vibrating, axially moving chain structure. This paper presents a novel analysis which integrates the local meshing phenomena with the global system. An axially moving chain interacting with local impacts has been modelled and the momentum balance method is employed to derive the impulse function. A study is carried out to quantify the intensity of subsequent impacts. It is found that the impact intensity is significantly affected by the vibration characteristics and response of the moving chain, and vice versa. The classical quasi-static approach will create errors in predicting the impulse magnitude and system response. Meshing frequencies that will cause maximum and minimum impulses are analytically predicted. This fundamental investigation provides new insight into roller chain dynamics, which is an essential step toward the design of quiet chain drives.

This content is only available via PDF.
You do not currently have access to this content.