We consider proofmass actuators for vibration suppression in flexible structures. Proofmass actuators appear to have a significant force-to-weight ratio over other types of actuators; hence, there has been considerable interest in them recently. These actuators, however, have a maximum force capability imposed in part by the stroke length of the proofmass. This nonlinearity is difficult to handle because this constraint cannot be violated (unlike saturation of electronic devices). Furthermore, this constraint is peculiar to this type of actuator. In this paper we consider the control loop structure of a feedback control system which contains a proofmass actuator for vibration suppression. This loop structure is decomposed into inner control loops directly related to the actuator and outer loops which add damping to the structure. The inner loops determine the frequency response of the actuator. Evidently, when the frequency response of the actuator is matched to the stroke/force saturation curve, the actuator is most effective in the vibration suppression loops. Since the stroke/force saturation curve is characterized by the stroke length, mass of the proofmass, and the maximum current delivered by motor electronics, this actuator can be easily sized for a particular application. We also discuss the interaction between the inner loops around the actuator and the structure (with the vibration loops open). To illustrate our results, we consider linear DC motors as proofmass actuators for the COFS-I Mast. To discuss the interaction the actuator and the structure, we develop a simple result based on classical control theory. This result is of independent interest since it leads to a simple procedure for designing low order compensators for single-input-single-output systems with poles near the imaginary axis.

This content is only available via PDF.
You do not currently have access to this content.