A technique is proposed which systematically adjusts a finite element model of a structure to produce an updated model in agreement with measured modal results. The approach suggested here is to consider the desired perturbations in stiffness and damping matrices as gain matrices in a feedback control algorithm designed to perform eigenstructure assignment. The improved stiffness and damping matrices combined with the analytical mass matrix, more closely predict the modal test results. The technique is applicable to undamped, proportionally damped, as well as non-proportionally damped models. The proposed method assumes that the analytical mass, damping and stiffness matrices are known and that vibration test data is available in the form of natural frequencies, damping ratios, and mode shapes.

This content is only available via PDF.
You do not currently have access to this content.